An Architecture-Level Energy and Area Estimator for Processing-In-Memory Accelerator Designs

Processing-in-memory (PIM) deep neural network (DNN) accelerators, which aim to improve energy/area efficiency of DNN processing by integrating computation into data storage, have gained popularity in recent years. Therefore, it is attractive to have a generally applicable framework that is able to quickly provide insights into the various trade-offs involved in PIM accelerator designs. We present an architecture-level design estimation framework for PIM accelerators that allows easy representations of the designs with provided architecture templates and component design templates, performs analytical runtime simulations, and produces technology-dependent area and energy estimations. We show that the framework can be easily used to evaluate state of the art PIM accelerator designs; it achieves 95% accurate total energy estimations and reproduces exact area breakdowns of the components in the design. Related open-source code is available at http://accelergy.mit.edu/.

[1]  Wei Tang,et al.  CASCADE: Connecting RRAMs to Extend Analog Dataflow In An End-To-End In-Memory Processing Paradigm , 2019, MICRO.

[2]  Tao Zhang,et al.  PRIME: A Novel Processing-in-Memory Architecture for Neural Network Computation in ReRAM-Based Main Memory , 2016, 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA).

[3]  Yiran Chen,et al.  PipeLayer: A Pipelined ReRAM-Based Accelerator for Deep Learning , 2017, 2017 IEEE International Symposium on High Performance Computer Architecture (HPCA).

[4]  Vivienne Sze,et al.  Accelergy: An Architecture-Level Energy Estimation Methodology for Accelerator Designs , 2019, 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).

[5]  Vivienne Sze,et al.  Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices , 2018, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[6]  Joel Emer,et al.  Eyeriss: a spatial architecture for energy-efficient dataflow for convolutional neural networks , 2016, CARN.

[7]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[8]  Miao Hu,et al.  ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog Arithmetic in Crossbars , 2016, 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA).

[9]  Brucek Khailany,et al.  Timeloop: A Systematic Approach to DNN Accelerator Evaluation , 2019, 2019 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS).

[10]  Mengjia Yan,et al.  UCNN: Exploiting Computational Reuse in Deep Neural Networks via Weight Repetition , 2018, 2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA).

[11]  Rajesh K. Gupta,et al.  SnaPEA: Predictive Early Activation for Reducing Computation in Deep Convolutional Neural Networks , 2018, 2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA).