Distances on nanotubical structures

Nanotubical graphs are obtained by wrapping a hexagonal grid into a cylinder, and then possibly closing the tube with patches. In this paper we determine the number of vertices at distance d from a particular vertex in an open (k, l) nanotubical graph. Surprisingly, this number does not depend much on the type of the nanotubical structure, but mainely on its circumference. In particular, for $$d\ge 2k$$d≥2k it is $$2\,(k+l)$$2(k+l) for an infinite open nanotube. This result can be used as a tool for precise evaluation of distance based topological indices for nanotubical structures. The presented results imply an interesting conclusion that these indices do not distinguish the type of the nanotubes very well.

[1]  Riste Škrekovski,et al.  On Diameter of Nanotubical Fullerene Graphs , 2015 .

[2]  A. Bultheel,et al.  Statistical properties of carbon nanostructures , 2013, Journal of Mathematical Chemistry.

[3]  Riste Skrekovski,et al.  Mathematical aspects of fullerenes , 2016, Ars Math. Contemp..

[4]  Andreas W. M. Dress,et al.  A Constructive Enumeration of Fullerenes , 1997, J. Algorithms.

[5]  Gérard Grassy,et al.  Computer-assisted rational design of immunosuppressive compounds , 1998, Nature Biotechnology.

[6]  Roberto Todeschini,et al.  Handbook of Molecular Descriptors , 2002 .

[7]  Tomislav Došlić,et al.  Cyclical Edge-Connectivity of Fullerene Graphs and (k, 6)-Cages , 2003 .

[8]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[9]  A. Balaban Highly discriminating distance-based topological index , 1982 .

[10]  Gebräuchliche Fertigarzneimittel,et al.  V , 1893, Therapielexikon Neurologie.

[11]  Lukas N. Wirz,et al.  The topology of fullerenes , 2014, Wiley interdisciplinary reviews. Computational molecular science.

[12]  Alexandru T. Balaban,et al.  Topological indices based on topological distances in molecular graphs , 1983 .

[13]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[14]  A. Balaban,et al.  Topological Indices and Related Descriptors in QSAR and QSPR , 2003 .

[15]  M. Dresselhaus,et al.  Phonons in carbon nanotubes , 2000 .

[16]  H. Wiener Structural determination of paraffin boiling points. , 1947, Journal of the American Chemical Society.

[17]  Patrick W. Fowler,et al.  A census of nanotube caps , 1999 .