Generalizing Simulation to Abstract Domains

We introduce a notion of subsumption for domains used in abstract interpretation. We show that subsumption has the same properties and applications in the context of abstract interpretation that simulation has for transition systems. These include a modal characterisation theorem, a fixed point characterisation, and the construction of property-preserving abstractions. We use the notion of conjugate functions from algebraic logic to develop bisubsumption, an order-theoretic generalisation of bisimulation to Boolean domains. We prove a representation theorem that relates simulation and subsumption.

[1]  Paul Blain Levy,et al.  Similarity Quotients as Final Coalgebras , 2011, FoSSaCS.

[2]  Frank Piessens,et al.  A programming model for concurrent object-oriented programs , 2008, TOPL.

[3]  M. Maidi The common fragment of CTL and LTL , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[4]  Parosh Aziz Abdulla,et al.  Algorithmic Analysis of Programs with Well Quasi-ordered Domains , 2000, Inf. Comput..

[5]  Francesco Ranzato,et al.  Generalized Strong Preservation by Abstract Interpretation , 2004, J. Log. Comput..

[6]  Pasquale Malacaria Studying Equivalences of Transition Systems with Algebraic Tools , 1995, Theor. Comput. Sci..

[7]  A. Tarski,et al.  Boolean Algebras with Operators , 1952 .

[8]  Davide Sangiorgi,et al.  On the origins of bisimulation and coinduction , 2009, TOPL.

[9]  Patrick Cousot,et al.  Systematic design of program analysis frameworks , 1979, POPL.

[10]  Corina Cîrstea,et al.  A modular approach to defining and characterising notions of simulation , 2006, Inf. Comput..

[11]  Patrick Cousot,et al.  Temporal abstract interpretation , 2000, POPL '00.

[12]  Parosh Aziz Abdulla,et al.  When Simulation Meets Antichains , 2010, TACAS.

[13]  Ian Stark,et al.  Free-Algebra Models for the pi-Calculus , 2005, FoSSaCS.

[14]  Joseph Sifakis,et al.  Property preserving abstractions for the verification of concurrent systems , 1995, Formal Methods Syst. Des..

[15]  Yde Venema,et al.  A Sahlqvist theorem for distributive modal logic , 2005, Ann. Pure Appl. Log..

[16]  Ramon Jansana,et al.  Priestley Duality, a Sahlqvist Theorem and a Goldblatt-Thomason Theorem for Positive Modal Logic , 1999, Log. J. IGPL.

[17]  R. V. Glabbeek CHAPTER 1 – The Linear Time - Branching Time Spectrum I.* The Semantics of Concrete, Sequential Processes , 2001 .

[18]  Bart Jacobs,et al.  Simulations in Coalgebra , 2003, CMCS.

[19]  Thomas A. Henzinger,et al.  A classification of symbolic transition systems , 2000, TOCL.

[20]  Rob J. van Glabbeek,et al.  The Linear Time - Branching Time Spectrum I , 2001, Handbook of Process Algebra.

[21]  Nancy A. Lynch,et al.  Forward and Backward Simulations: I. Untimed Systems , 1995, Inf. Comput..

[22]  Philippe Schnoebelen,et al.  Well-structured transition systems everywhere! , 2001, Theor. Comput. Sci..

[23]  Jean-François Raskin,et al.  Antichain Algorithms for Finite Automata , 2010, TACAS.

[24]  Rob J. van Glabbeek,et al.  The Linear Time - Branching Time Spectrum II , 1993, CONCUR.