Generalizing Simulation to Abstract Domains
暂无分享,去创建一个
[1] Paul Blain Levy,et al. Similarity Quotients as Final Coalgebras , 2011, FoSSaCS.
[2] Frank Piessens,et al. A programming model for concurrent object-oriented programs , 2008, TOPL.
[3] M. Maidi. The common fragment of CTL and LTL , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.
[4] Parosh Aziz Abdulla,et al. Algorithmic Analysis of Programs with Well Quasi-ordered Domains , 2000, Inf. Comput..
[5] Francesco Ranzato,et al. Generalized Strong Preservation by Abstract Interpretation , 2004, J. Log. Comput..
[6] Pasquale Malacaria. Studying Equivalences of Transition Systems with Algebraic Tools , 1995, Theor. Comput. Sci..
[7] A. Tarski,et al. Boolean Algebras with Operators , 1952 .
[8] Davide Sangiorgi,et al. On the origins of bisimulation and coinduction , 2009, TOPL.
[9] Patrick Cousot,et al. Systematic design of program analysis frameworks , 1979, POPL.
[10] Corina Cîrstea,et al. A modular approach to defining and characterising notions of simulation , 2006, Inf. Comput..
[11] Patrick Cousot,et al. Temporal abstract interpretation , 2000, POPL '00.
[12] Parosh Aziz Abdulla,et al. When Simulation Meets Antichains , 2010, TACAS.
[13] Ian Stark,et al. Free-Algebra Models for the pi-Calculus , 2005, FoSSaCS.
[14] Joseph Sifakis,et al. Property preserving abstractions for the verification of concurrent systems , 1995, Formal Methods Syst. Des..
[15] Yde Venema,et al. A Sahlqvist theorem for distributive modal logic , 2005, Ann. Pure Appl. Log..
[16] Ramon Jansana,et al. Priestley Duality, a Sahlqvist Theorem and a Goldblatt-Thomason Theorem for Positive Modal Logic , 1999, Log. J. IGPL.
[17] R. V. Glabbeek. CHAPTER 1 – The Linear Time - Branching Time Spectrum I.* The Semantics of Concrete, Sequential Processes , 2001 .
[18] Bart Jacobs,et al. Simulations in Coalgebra , 2003, CMCS.
[19] Thomas A. Henzinger,et al. A classification of symbolic transition systems , 2000, TOCL.
[20] Rob J. van Glabbeek,et al. The Linear Time - Branching Time Spectrum I , 2001, Handbook of Process Algebra.
[21] Nancy A. Lynch,et al. Forward and Backward Simulations: I. Untimed Systems , 1995, Inf. Comput..
[22] Philippe Schnoebelen,et al. Well-structured transition systems everywhere! , 2001, Theor. Comput. Sci..
[23] Jean-François Raskin,et al. Antichain Algorithms for Finite Automata , 2010, TACAS.
[24] Rob J. van Glabbeek,et al. The Linear Time - Branching Time Spectrum II , 1993, CONCUR.