Hybrid modelling of biological systems using fuzzy continuous Petri nets

Integrated modelling of biological systems is challenged by composing components with sufficient kinetic data and components with insufficient kinetic data or components built only using experts' experience and knowledge. Fuzzy continuous Petri nets (FCPNs) combine continuous Petri nets with fuzzy inference systems, and thus offer an hybrid uncertain/certain approach to integrated modelling of such biological systems with uncertainties. In this paper, we give a formal definition and a corresponding simulation algorithm of FCPNs, and briefly introduce the FCPN tool that we have developed for implementing FCPNs. We then present a methodology and workflow utilizing FCPNs to achieve hybrid (uncertain/certain) modelling of biological systems illustrated with a case study of the Mercaptopurine metabolic pathway. We hope this research will promote the wider application of FCPNs and address the uncertain/certain integrated modelling challenge in the systems biology area.

[1]  Monika Heiner,et al.  Petri Nets for Systems and Synthetic Biology , 2008, SFM.

[2]  Lukas Windhager,et al.  Modeling of dynamic systems with Petri nets and fuzzy logic , 2013 .

[3]  C. Petri Kommunikation mit Automaten , 1962 .

[4]  Atsushi Doi,et al.  Biopathways representation and simulation on hybrid functional Petri net , 2003, Silico Biol..

[5]  Monika Heiner,et al.  A Unifying Framework for Modelling and Analysing Biochemical Pathways Using Petri Nets , 2007, CMSB.

[6]  S. Mangan,et al.  Structure and function of the feed-forward loop network motif , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Monika Heiner,et al.  Hybrid representation and simulation of stiff biochemical networks , 2012 .

[8]  David R. Gilbert,et al.  A Model Checking Approach to the Parameter Estimation of Biochemical Pathways , 2008, CMSB.

[9]  E. Postnikov,et al.  ODE and Random Boolean networks in application to modelling of 6-mercaptopurine metabolism , 2016, 1611.00054.

[10]  Monika Heiner,et al.  A structured approach for the engineering of biochemical network models, illustrated for signalling pathways , 2008, Briefings Bioinform..

[11]  Maksat Ashyraliyev,et al.  Systems biology: parameter estimation for biochemical models , 2009, The FEBS journal.

[12]  Yoshiki Uchikawa,et al.  On fuzzy modeling using fuzzy neural networks with the back-propagation algorithm , 1992, IEEE Trans. Neural Networks.

[13]  Jonathan R. Karr,et al.  A Whole-Cell Computational Model Predicts Phenotype from Genotype , 2012, Cell.

[14]  Age K. Smilde,et al.  Validation and selection of ODE based systems biology models: how to arrive at more reliable decisions , 2015, BMC Systems Biology.

[15]  Monika Heiner,et al.  Extended Stochastic Petri Nets for Model-Based Design of Wetlab Experiments , 2009, Trans. Comp. Sys. Biology.

[16]  Miha Mraz,et al.  Semi-quantitative Modelling of Gene Regulatory Processes with Unknown Parameter Values Using Fuzzy Logic and Petri Nets , 2018, Fundam. Informaticae.

[17]  Miguel Rocha,et al.  Modeling formalisms in Systems Biology , 2011, AMB Express.

[18]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[19]  Antonis Papachristodoulou,et al.  On validation and invalidation of biological models , 2009, BMC Bioinformatics.

[20]  Martin Schwarick,et al.  Charlie - An Extensible Petri Net Analysis Tool , 2015, Petri Nets.

[21]  Monika Heiner,et al.  Fuzzy Petri nets for modelling of uncertain biological systems , 2018, Briefings Bioinform..

[22]  Tadao Murata,et al.  Petri nets: Properties, analysis and applications , 1989, Proc. IEEE.

[23]  S. Soliman,et al.  A Unique Transformation from Ordinary Differential Equations to Reaction Networks , 2010, PloS one.

[24]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[25]  W. Evans,et al.  Mechanistic mathematical modelling of mercaptopurine effects on cell cycle of human acute lymphoblastic leukaemia cells , 2005, British Journal of Cancer.

[26]  A. Aderem Systems Biology: Its Practice and Challenges , 2005, Cell.

[27]  Carmen G. Moles,et al.  Parameter estimation in biochemical pathways: a comparison of global optimization methods. , 2003, Genome research.

[28]  Choujun Zhan,et al.  Parameter estimation in systems biology models using spline approximation , 2011, BMC Systems Biology.

[29]  Patrick T. Hester,et al.  Towards a theory of multi-method M&S approach: Part I , 2014, Proceedings of the Winter Simulation Conference 2014.

[30]  Javier Carrera,et al.  Why Build Whole-Cell Models? , 2015, Trends in cell biology.

[31]  A. Benso,et al.  Multi-level and hybrid modelling approaches for systems biology , 2017, Computational and structural biotechnology journal.

[32]  H. Kitano Systems Biology: A Brief Overview , 2002, Science.

[33]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[34]  Ebrahim Mamdani,et al.  Applications of fuzzy algorithms for control of a simple dynamic plant , 1974 .

[35]  Nan Xiao,et al.  Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli , 2008, Bioinform..

[36]  Monika Heiner,et al.  Towards dynamic genome-scale models , 2017, Briefings Bioinform..

[37]  G. N. Pillai,et al.  Recent advances in neuro-fuzzy system: A survey , 2018, Knowl. Based Syst..

[38]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[39]  Monika Heiner,et al.  Multiscale Modeling and Analysis of Planar Cell Polarity in the Drosophila Wing , 2013, IEEE/ACM Transactions on Computational Biology and Bioinformatics.