Ubiquitous Parameterization - Invitation to Fixed-Parameter Algorithms

Problem parameters are ubiquitous. In every area of computer science, we find all kinds of “special aspects” to the problems encountered. Hence, the study of parameterized complexity for computationally hard problems is proving highly fruitful. The purpose of this article is to stir the reader’s interest in this field by providing a gentle introduction to the rewarding field of fixed-parameter algorithms.

[1]  Samir Khuller,et al.  Algorithms column: the vertex cover problem , 2002, SIGA.

[2]  Jens Gramm Fixed-parameter algorithms for the consensus analysis of genomic data , 2003 .

[3]  Meena Mahajan,et al.  Parametrizing Above Guaranteed Values: MaxSat and MaxCut , 1997, Electron. Colloquium Comput. Complex..

[4]  Catherine McCartin Parameterized counting problems , 2006, Ann. Pure Appl. Log..

[5]  Vijay V. Vazirani,et al.  Approximation Algorithms , 2001, Springer Berlin Heidelberg.

[6]  Michael R. Fellows,et al.  The Parameterized Complexity of Sequence Alignment and Consensus , 1994, CPM.

[7]  Liming Cai,et al.  On Fixed-Parameter Tractability and Approximability of NP Optimization Problems , 1997, J. Comput. Syst. Sci..

[8]  H. L. Bodlaender,et al.  Treewidth: Algorithmic results and techniques , 1997 .

[9]  Giorgio Gambosi,et al.  Complexity and approximation: combinatorial optimization problems and their approximability properties , 1999 .

[10]  Oliver Kullmann,et al.  New Methods for 3-SAT Decision and Worst-case Analysis , 1999, Theor. Comput. Sci..

[11]  Edward A. Hirsch,et al.  New Worst-Case Upper Bounds for SAT , 2000, Journal of Automated Reasoning.

[12]  Rolf Niedermeier,et al.  Fixed Parameter Algorithms for DOMINATING SET and Related Problems on Planar Graphs , 2002, Algorithmica.

[13]  Ge Xia,et al.  Strong computational lower bounds via parameterized complexity , 2006, J. Comput. Syst. Sci..

[14]  M. Hofri Analysis of Algorithms: Computational Methods & Mathematical Tools , 1995 .

[15]  Rolf Niedermeier,et al.  On the Parameterized Intractability of CLOSEST SUBSTRINGsize and Related Problems , 2002, STACS.

[16]  Samir Khuller The vertex cover problem , 2002 .

[17]  Dimitrios M. Thilikos,et al.  Dominating sets in planar graphs: branch-width and exponential speed-up , 2003, SODA '03.

[18]  Noga Alon,et al.  Color-coding , 1995, JACM.

[19]  Rolf Niedermeier,et al.  On Exact and Approximation Algorithms for Distinguishing Substring Selection , 2003, FCT.

[20]  Michael R. Fellows,et al.  Kernelization Algorithms for the Vertex Cover Problem: Theory and Experiments , 2004, ALENEX/ANALC.

[21]  Rolf Niedermeier,et al.  Breakpoint medians and breakpoint phylogenies: A fixed-parameter approach , 2002, ECCB.

[22]  Stefan Szeider,et al.  Minimal Unsatisfiable Formulas with Bounded Clause-Variable Difference are Fixed-Parameter Tractable , 2003, COCOON.

[23]  Ulrike Stege,et al.  Solving large FPT problems on coarse-grained parallel machines , 2003, J. Comput. Syst. Sci..

[24]  Michael R. Fellows,et al.  The dominating set problem is fixed parameter tractable for graphs of bounded genus , 2004, J. Algorithms.

[25]  Jörg Flum,et al.  Bounded Fixed-Parameter Tractability and log2n Nondeterministic Bits , 2004, ICALP.

[26]  Rolf Niedermeier,et al.  Parameterized complexity: exponential speed-up for planar graph problems , 2004, J. Algorithms.

[27]  Russell Impagliazzo,et al.  Which Problems Have Strongly Exponential Complexity? , 2001, J. Comput. Syst. Sci..

[28]  Dimitrios M. Thilikos,et al.  A Simple and Fast Approach for Solving Problems on Planar Graphs , 2004, STACS.

[29]  Wolfgang Küchlin,et al.  Formal methods for the validation of automotive product configuration data , 2003, Artificial Intelligence for Engineering Design, Analysis and Manufacturing.

[30]  S. E. Dreyfus,et al.  The steiner problem in graphs , 1971, Networks.

[31]  Jörg Flum,et al.  Bounded fixed-parameter tractability and log2n nondeterministic bits , 2004, J. Comput. Syst. Sci..

[32]  Rolf Niedermeier,et al.  On Efficient Fixed Parameter Algorithms for WEIGHTED VERTEX COVER , 2000, ISAAC.

[33]  Michael R. Fellows,et al.  New Directions and New Challenges in Algorithm Design and Complexity, Parameterized , 2003, WADS.

[34]  Rolf Niedermeier,et al.  A general method to speed up fixed-parameter-tractable algorithms , 2000, Inf. Process. Lett..

[35]  Gerhard J. Woeginger,et al.  The Traveling Salesman Problem with Few Inner Points , 2004, COCOON.

[36]  Michael R. Fellows,et al.  Parameterized Complexity: The Main Ideas and Connections to Practical Computing , 2000, Experimental Algorithmics.

[37]  Stefan Szeider,et al.  On Fixed-Parameter Tractable Parameterizations of SAT , 2003, SAT.

[38]  Kazuo Iwama,et al.  Improved upper bounds for 3-SAT , 2004, SODA '04.

[39]  Luca Trevisan,et al.  On the Efficiency of Polynomial Time Approximation Schemes , 1997, Inf. Process. Lett..

[40]  Harry B. Hunt,et al.  Power indices and easier hard problems , 2005, Mathematical systems theory.

[41]  Jochen Alber,et al.  Exact algorithms for NP hard problems on networks: design, analysis and implementation , 2002 .

[42]  Dorit S. Hochbaum,et al.  Approximation Algorithms for NP-Hard Problems , 1996 .

[43]  Weijia Jia,et al.  Vertex Cover: Further Observations and Further Improvements , 2001, J. Algorithms.

[44]  Russell Impagliazzo,et al.  Which problems have strongly exponential complexity? , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[45]  Erik D. Demaine,et al.  Subexponential parameterized algorithms on graphs of bounded-genus and H-minor-free graphs , 2004, SODA '04.

[46]  Mihalis Yannakakis,et al.  Primal-dual approximation algorithms for integral flow and multicut in trees , 1997, Algorithmica.

[47]  Henning Fernau,et al.  Parametric Duality: Kernel Sizes and Algorithmics , 2004, Electron. Colloquium Comput. Complex..

[48]  Rolf Niedermeier,et al.  Automated Generation of Search Tree Algorithms for Hard Graph Modification Problems , 2004, Algorithmica.

[49]  Rolf Niedermeier,et al.  A Structural View on Parameterizing Problems: Distance from Triviality , 2004, IWPEC.

[50]  Gerhard J. Woeginger,et al.  Exact Algorithms for NP-Hard Problems: A Survey , 2001, Combinatorial Optimization.

[51]  Leslie E. Trotter,et al.  Vertex packings: Structural properties and algorithms , 1975, Math. Program..

[52]  Juraj Hromkovic,et al.  Algorithmics for Hard Problems , 2004, Texts in Theoretical Computer Science. An EATCS Series.

[53]  S. Griffis EDITOR , 1997, Journal of Navigation.

[54]  Leizhen Cai,et al.  Parameterized Complexity of Vertex Colouring , 2003, Discret. Appl. Math..

[55]  Jörg Flum,et al.  The Parameterized Complexity of Counting Problems , 2004, SIAM J. Comput..

[56]  Alexander S. Kulikov,et al.  Automated Proofs of Upper Bounds on the Running Time of Splitting Algorithms , 2004, IWPEC.

[57]  Robert E. Tarjan,et al.  Applications of a planar separator theorem , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[58]  Jan Arne Telle,et al.  Practical Algorithms on Partial k-Trees with an Application to Domination-like Problems , 1993, WADS.

[59]  Rolf Niedermeier,et al.  Fixed-Parameter Algorithms for CLOSEST STRING and Related Problems , 2003, Algorithmica.

[60]  Rolf Niedermeier,et al.  Experimental evaluation of a tree decomposition-based algorithm for vertex cover on planar graphs , 2005, Discret. Appl. Math..

[61]  Bin Ma,et al.  Genetic Design of Drugs Without Side-Effects , 2003, SIAM J. Comput..

[62]  Evgeny Dantsin,et al.  Algorithms for Sat and Upper Bounds on Their Complexity , 2003, Electron. Colloquium Comput. Complex..

[63]  Rolf Niedermeier,et al.  Invitation to Fixed-Parameter Algorithms , 2006 .

[64]  Rolf Niedermeier,et al.  Efficient Data Reduction for DOMINATING SET: A Linear Problem Kernel for the Planar Case , 2002, SWAT.

[65]  Bin Ma,et al.  On the closest string and substring problems , 2002, JACM.

[66]  Sergey I. Nikolenko,et al.  Worst-case upper bounds for SAT: automated proof , 2003 .

[67]  Hans L. Bodlaender,et al.  A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..

[68]  Michael R. Fellows,et al.  Linear Kernels in Linear Time, or How to Save k Colors in O(n2) Steps , 2004, WG.

[69]  Liming Cai,et al.  On the existence of subexponential parameterized algorithms , 2003, J. Comput. Syst. Sci..

[70]  Wolfgang Küchlin,et al.  Proving Consistency Assertions for Automotive Product Data Management , 2000, Journal of Automated Reasoning.

[71]  Rolf Niedermeier,et al.  Refined Search Tree Technique for DOMINATING SET on Planar Graphs , 2001, MFCS.

[72]  Rolf Niedermeier,et al.  Experiments on data reduction for optimal domination in networks , 2006, Ann. Oper. Res..

[73]  Erik D. Demaine,et al.  Bidimensional Parameters and Local Treewidth , 2004, LATIN.

[74]  Gerhard J. Woeginger,et al.  The Traveling Salesman Problem with Few Inner Points , 2004, COCOON.

[75]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[76]  Henning Fernau,et al.  Parametric Duality : Kernel Sizes & Algorithmics , 2004 .

[77]  Rolf Niedermeier,et al.  Faster exact algorithms for hard problems: A parameterized point of view , 2001, Discret. Math..

[78]  Michael R. Fellows,et al.  Blow-Ups, Win/Win's, and Crown Rules: Some New Directions in FPT , 2003, WG.

[79]  Rolf Niedermeier,et al.  A fixed-parameter algorithm for minimum quartet inconsistency , 2003, J. Comput. Syst. Sci..

[80]  Rodney G. Downey,et al.  Parameterized complexity for the skeptic , 2003, 18th IEEE Annual Conference on Computational Complexity, 2003. Proceedings..

[81]  Rajeev Motwani,et al.  Randomized Algorithms , 1995, SIGA.

[82]  Rolf Niedermeier,et al.  Graph Separators: A Parameterized View , 2001, COCOON.

[83]  Martin Grohe,et al.  The complexity of first-order and monadic second-order logic revisited , 2002, Proceedings 17th Annual IEEE Symposium on Logic in Computer Science.

[84]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[85]  Carsten Sinz Visualizing the Internal Structure of SAT Instances (Preliminary Report) , 2004, SAT.

[86]  Michael R. Fellows,et al.  The Dominating Set Problem Is Fixed Parameter Tractable for Graphs of Bounded Genus , 2002, SWAT.

[87]  Krzysztof Pietrzak,et al.  On the parameterized complexity of the fixed alphabet shortest common supersequence and longest common subsequence problems , 2003, J. Comput. Syst. Sci..

[88]  Dr. Zbigniew Michalewicz,et al.  How to Solve It: Modern Heuristics , 2004 .

[89]  Martin Grohe,et al.  Parameterized complexity for the database theorist , 2002, SGMD.