A primal-dual semi-definite programming approach to linear quadratic control

We study a deterministic linear-quadratic (LQ) control problem over an infinite horizon, without the restriction that the control cost matrix R or the state cost matrix Q be positive-definite. We develop a general approach to the problem based on semi-definite programming (SDP) and related duality analysis. We show that the complementary duality condition of the SDP is necessary and sufficient for the existence of an optimal LQ control under a certain stability condition (which is satisfied automatically when Q is positive-definite). When the complementary duality does hold, an optimal state feedback control is constructed explicitly in terms of the solution to the primal SDP.

[1]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[2]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[3]  J. Willems Least squares stationary optimal control and the algebraic Riccati equation , 1971 .

[4]  R. E. Kalman,et al.  Contributions to the Theory of Optimal Control , 1960 .

[5]  A. Albert Conditions for Positive and Nonnegative Definiteness in Terms of Pseudoinverses , 1969 .

[6]  Brian D. O. Anderson,et al.  Singular Optimal Control: The Linear-Quadratic Problem , 1978 .

[7]  R. Penrose On best approximate solutions of linear matrix equations , 1956, Mathematical Proceedings of the Cambridge Philosophical Society.

[8]  C. Oara,et al.  Generalized Riccati Theory and Robust Control. A Popov Function Approach , 1999 .

[9]  A. Ran,et al.  Existence and comparison theorems for algebraic Riccati equations for continuous- and discrete-time systems , 1988 .

[10]  Brian D. O. Anderson,et al.  Matrix inequality solution to linear-quadratic singular control problems , 1977 .

[11]  Johannes Schumacher,et al.  The role of the dissipation matrix in singular optimal control , 1983 .

[12]  Karolos M. Grigoriadis,et al.  A unified algebraic approach to linear control design , 1998 .

[13]  X. Zhou,et al.  Stochastic Controls: Hamiltonian Systems and HJB Equations , 1999 .

[14]  L. Silverman,et al.  System structure and singular control , 1983 .

[15]  Xun Yu Zhou,et al.  Linear matrix inequalities, Riccati equations, and indefinite stochastic linear quadratic controls , 2000, IEEE Trans. Autom. Control..

[16]  Shuzhong Zhang,et al.  Duality Results for Conic Convex Programming , 1997 .

[17]  R. Penrose A Generalized inverse for matrices , 1955 .

[18]  B. Anderson,et al.  Optimal control: linear quadratic methods , 1990 .

[19]  J. Willems,et al.  Singular optimal control: A geometric approach , 1986 .

[20]  Vlad Ionescu,et al.  Generalized Riccati theory and robust control , 1999 .