Review: Regional groundwater flow modeling in heavily irrigated basins of selected states in the western United States

Water resources in agriculture-dominated basins of the arid western United States are stressed due to long-term impacts from pumping. A review of 88 regional groundwater-flow modeling applications from seven intensively irrigated western states (Arizona, California, Colorado, Idaho, Kansas, Nebraska and Texas) was conducted to provide hydrogeologists, modelers, water managers, and decision makers insight about past modeling studies that will aid future model development. Groundwater models were classified into three types: resource evaluation models (39 %), which quantify water budgets and act as preliminary models intended to be updated later, or constitute re-calibrations of older models; management/planning models (55 %), used to explore and identify management plans based on the response of the groundwater system to water-development or climate scenarios, sometimes under water-use constraints; and water rights models (7 %), used to make water administration decisions based on model output and to quantify water shortages incurred by water users or climate changes. Results for 27 model characteristics are summarized by state and model type, and important comparisons and contrasts are highlighted. Consideration of modeling uncertainty and the management focus toward sustainability, adaptive management and resilience are discussed, and future modeling recommendations, in light of the reviewed models and other published works, are presented.RésuméLes ressources en eau de bassins dominés par l’agriculture de la partie occidentale et aride des Etats Unis sont sous tension due aux impacts à long terme des pompages. Une revue de 88 applications de modèles régionaux d’écoulements souterrains dans sept états de l’ouest des Etats-Unis, caractérisés par une irrigation intensive (Arizona, Californie, Colorado, Idaho, Kansas, Nebraska et Texas) a été menée afin de fournir aux hydrogéologues, gestionnaires en eau et aux décideurs des informations concernant les études antérieures de modélisation, qui aideront au développement des futurs modèles. Les modèles d’écoulements souterrains ont été classés selon trois types: modèles d’évaluation de la ressource (39 %), qui quantifient les bilans hydriques et qui agissent en tant que modèles préliminaires à mettre à jour ultérieurement, ou qui consistent en des réétalonnages de modèles plus anciens; modèles de gestion/planification (55 %), utilisés pour examiner et identifier des plans de gestion basés sur la réponse des systèmes aquifères à l’exploitation des ressources ou à des scénarios climatiques, parfois sous contraintes d’usages de l’eau; et des modèles des droits de l’eau (7 %), utilisés pour la prise de décisions relatives à l’administration de l’eau à partir des sorties de modèles et pour quantifier les pénuries en eau encourus par les usagers ou les changements climatiques. Les résultats pour les caractéristiques de 27 modèles sont résumés par état et par type de modèle, et des comparaisons et contrastes importants entre modèles sont mis en évidence. La prise en compte des incertitudes des modèles et de la gestion centrée sur la durabilité, la gestion adaptative et la résilience sont discutées, et des recommandations pour de futures modélisations, à la lumière des modèles examinés et d’autres travaux publiés sont présentées.ResumenLos recursos de agua en cuencas dominadas por la agricultura del oeste árido de los Estados Unidos están bajo presión debido a los impactos a largo plazo del bombeo. Se realizó una revisión de 88 aplicaciones de modelos de flujo regional de agua subterránea de siete estados occidentales del intensivamente irrigados (Arizona, California, Colorado, Idaho, Kansas, Nebraska y Texas) para proporcionar a los hidrogeólogos, modelistas, gestores del agua, y tomadores de decisión una visión más profunda acerca de estudios de modelos pasados que ayudarán al desarrollo de futuros modelos. Los modelos de agua subterránea se clasificaron en tres tipos: modelos de evaluación del recurso (39 %), que cuantifican los balances de agua y actúan como modelos preliminares con el propósito de ser actualizados posteriormente, o constituyen recalibraciones de modelos más viejos; modelos de gestión/planificación (55 %), usados para explorar e identificar los planes de gestión basados en la respuesta de sistemas de agua subterránea al desarrollo del agua o escenarios climáticos, algunas veces bajo restricciones en el uso del agua; y modelos de derechos de agua (7 %), usados para tomar decisiones sobre la administración del agua basados en los resultados del modelo y para cuantificar la escasez del agua provocada por usuarios del agua o cambios climáticos. Se resumen los resultados de 27 características de modelos por estados y por tipos de modelo, y se resaltan importantes comparaciones y contrastes. Se discute la consideración de la incertidumbre del modelo y el enfoque de la gestión hacia la sustentabilidad, la gestión adaptativa y la resiliencia, y se presentan recomendaciones futuras de modelados, a la luz de los modelos revisados y otros trabajos publicados.摘要由于长期抽水的影响,美国西部干旱地区以农业为主的盆地的地下水资源很紧张。总结了88个应用于7个集中灌溉的西部州(亚利桑那州、加利福尼亚州、科罗拉多州、爱达荷州、堪萨斯州、内布拉斯加州和德克萨斯州)的区域地下水径流模型,提供给水文地质学家、建模者、水资源管理者和决策者,总结过去的建模研究,以有助于将来的模型发展。地下水模型分为三类:第一种是资源评价模型(39 %),用于量化水资源预算,是需要更新的原始模型,或用于校准老的模型;第二种是管理/规划模型(55 %),用于探索或确定管理计划,基于水开发和气候变化下地下水系统的反应,有时在水使用的限制下;第三种是用水权模型(7 %),用于基于模型输出的水行政决策,以及量化由于使用和气候变化导致的水短缺。根据州和模型类型总结了27个模型特点,突出了重要的对比。考虑到模型的不确定性和管理的重点在于可持续性,讨论了适应性管理和应变性,并根据总结的模型和已出版的资料,提出了将来建模的建议。ResumoOs recursos hídricos em bacias dominadas por agricultura na região árida do oeste dos Estados Unidos estão sob pressão devido aos impactos de longo prazo de bombeamentos. Foi efetuada uma revisão de 88 aplicações de modelos regionais de fluxo subterrâneo em sete estados do oeste intensamente irrigados (Arizona, Califórnia, Colorado, Idaho, Kansas, Nebrasca e Texas) para fornecer aos hidrogeólogos, modeladores, gestores de recursos hídricos e tomadores de decisão uma visão sobre os estudos de modelação do passado, no sentido de ajudar o desenvolvimento de modelos no futuro. Os modelos de fluxo subterrâneo foram classificados em três tipos: modelos de avaliação dos recursos (39 %), que quantificam os balanços hídricos e atuam como modelos preliminares destinados a serem atualizados posteriormente ou que constituem recalibrações de modelos mais antigos; modelos de gestão/planeamento (55 %), usados para explorar e identificar planos de gestão com base na resposta do sistema das águas subterrâneas a cenários de exploração ou de clima, por vezes sob restrições de uso da água; e modelos de direitos de água (7 %), usados para tomar decisões de administração de água com base nos resultados dos modelos e para quantificar a escassez de água originada por utilizadores ou por alterações climáticas. Os resultados para 27 características dos modelos são resumidos por estado e por tipo de modelo, realçando-se as semelhanças e os contrastes mais importantes. Discutem-se a consideração da incerteza da modelação e o foco da gestão no sentido da sustentabilidade, a gestão adaptativa e a resiliência e presentam-se recomendações para a modelação futura à luz dos modelos avaliados e de outros trabalhos publicados.

[1]  Timothy J. Durbin,et al.  Calibration of a mathematical model of the Antelope Valley ground-water basin, California , 1976 .

[2]  E. L. Kuniansky,et al.  Simulations of flow in the Edwards-Trinity aquifer system and contiguous hydraulically connected units, west-central Texas , 1994 .

[3]  Sorab Panday,et al.  Future of Groundwater Modeling , 2012, Ground water.

[4]  Luk Peeters,et al.  Application of a multimodel approach to account for conceptual model and scenario uncertainties in groundwater modelling , 2010 .

[5]  Diana M. Allen,et al.  Groundwater sustainability strategies , 2010 .

[6]  G. Johnson,et al.  Aquifer Management Zones Based on Simulated Surface-Water Response Functions , 2005 .

[7]  D. Pool,et al.  Ground-Water Flow Model of the Sierra Vista Subwatershed and Sonoran Portions of the Upper San Pedro Basin, Southeastern Arizona, United States, and Northern Sonora, Mexico , 2007 .

[8]  Ming Ye,et al.  MMA: A Computer Code for Multimodel Analysis , 2010 .

[9]  Mary C. Hill,et al.  MMA, A Computer Code for Multi-Model Analysis , 2014 .

[10]  Nancy L. Barber,et al.  Estimated use of water in the United States in 2005 , 2009 .

[11]  S. P. Garabedian Hydrology and digital simulation of the regional aquifer system, eastern Snake River Plain, Idaho , 1989 .

[12]  William M. Alley,et al.  Sustainability of ground-water resources , 1999 .

[13]  William C Walton Aquifer system response time and groundwater supply management. , 2011, Ground water.

[14]  R. R. Luckey,et al.  Effect of grid size on digital simulation of ground-water flow in the southern High Plains of Texas and New Mexico , 1987 .

[15]  J. Böhlke,et al.  Vertical gradients in water chemistry and age in the Northern High Plains Aquifer, Nebraska, 2003 , 2004 .

[16]  C. Tiedeman,et al.  Effective Groundwater Model Calibration , 2007 .

[17]  Francis I. Chung,et al.  Drought Resilience of the California Central Valley Surface-Ground-Water-Conveyance System , 2009 .

[18]  Gilbert T. Bernhardt,et al.  A comprehensive surface-groundwater flow model , 1993 .

[19]  Jens Christian Refsgaard,et al.  Groundwater Modeling in Integrated Water Resources Management—Visions for 2020 , 2010, Ground water.

[20]  John W. Labadie,et al.  Decision Support System for Conjunctive Stream-Aquifer Management , 1998 .

[21]  G. Pinder,et al.  Application of Galerkin's Procedure to aquifer analysis , 1972 .

[22]  M. Sophocleous,et al.  Calibrated models as management tools for stream-aquifer systems: the case of central Kansas, USA , 1993 .

[23]  Young-Jin Park,et al.  Simulating the pre-development hydrologic conditions in the San Joaquin Valley, California , 2011 .

[24]  W. Alley,et al.  Hydrologic Aspects of Water Sustainability and Their Relation to a National Assessment of Water Availability and Use , 2004 .

[25]  D. E. Prudic,et al.  Ground-water flow and simulated effects of development in Paradise Valley, a basin tributary to the Humboldt River in Humboldt County, Nevada , 1996 .

[26]  F. Kalf,et al.  Applicability and methodology of determining sustainable yield in groundwater systems , 2005 .

[27]  S. Gorelick A review of distributed parameter groundwater management modeling methods , 1983 .

[28]  J. Bredehoeft Modeling groundwater flow--the beginnings. , 2012, Ground water.

[29]  Marios Sophocleous,et al.  Retracted: On Understanding and Predicting Groundwater Response Time , 2012, Ground water.

[30]  Leonard F. Konikow,et al.  Predictive Accuracy of a Ground–Water Model — Lessons from a Postaudit , 1986 .

[31]  Brian J. Wagner,et al.  Groundwater Simulation and Management Models for the Upper Klamath Basin, Oregon and California , 2014 .

[32]  W. Alley Tracking U.S. Groundwater: Reserves for the Future? , 2006 .

[33]  J. K. Koelliker,et al.  Integrated numerical modeling for basin-wide water management: The case of the Rattlesnake Creek basin in south-central Kansas , 1999 .

[34]  M. Becker,et al.  Hydrogeology, water use, and simulation of flow in the High Plains aquifer in northwestern Oklahoma, southeastern Colorado, southwestern Kansas, northeastern New Mexico, and northwestern Texas , 1999 .

[35]  Dennis Wichelns,et al.  Sustainable irrigation is necessary and achievable, but direct costs and environmental impacts can be substantial , 2006 .

[36]  D. Pool Hydrogeology of McMullen Valley, west-central Arizona , 1987 .

[37]  M. Butts,et al.  Flexible Integrated Watershed Modeling with MIKE SHE , 2005 .

[38]  C. Faunt,et al.  Groundwater availability of the Central Valley Aquifer, California , 2009 .

[39]  Steven G. Smith,et al.  ParFlow User's Manual , 2014 .

[40]  Peter C. Trescott,et al.  Documentation of finite-difference model for simulation of three-dimensional ground-water flow , 1975 .

[41]  S. Phillips,et al.  Simulation of ground-water flow and land subsidence in the Antelope Valley ground-water basin, California , 2003 .

[43]  D. E. Prudic,et al.  GSFLOW - Coupled Ground-Water and Surface-Water Flow Model Based on the Integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-2005) , 2008 .

[44]  S. A. Leake,et al.  Simulated effects of ground-water withdrawals and artificial recharge on discharge to streams, springs, and riparian vegetation in the Sierra Vista Subwatershed of the Upper San Pedro Basin, southeastern Arizona , 2008 .

[45]  Mary C. Hill,et al.  UCODE_2005 and six other computer codes for universal sensitivity analysis, calibration, and uncertainty evaluation constructed using the JUPITER API , 2006 .

[46]  C. S. Holling Resilience and Stability of Ecological Systems , 1973 .

[47]  G. Pinder An iterative digital model for aquifer evaluation , 1969 .

[48]  David W. Cash Innovative Natural Resource Management: Nebraska's Model for Linking Science and Decisionmaking , 2003 .

[49]  R. Hunt,et al.  The Current State of Modeling , 2012, Ground water.

[50]  R. Banning Analysis of the groundwater/surface water interactions in the Arikaree River Basin of eastern Colorado , 2007 .

[51]  Joseph P. Rousseau,et al.  Steady-State and Transient Models of Groundwater Flow and Advective Transport, Eastern Snake River Plain Aquifer, Idaho National Laboratory and Vicinity, Idaho , 2014 .

[52]  David Holtz,et al.  Groundwater management, the use of numerical models , 1980 .

[53]  M. Sophocleous,et al.  Development of a Comprehensive Watershed Model Applied to Study Stream Yield under Drought Conditions , 1999 .

[54]  Arlen W. Harbaugh,et al.  A modular three-dimensional finite-difference ground-water flow model , 1984 .

[55]  Peter A. Vanrolleghem,et al.  Uncertainty in the environmental modelling process - A framework and guidance , 2007, Environ. Model. Softw..

[56]  L. N. Plummer,et al.  Old groundwater in parts of the upper Patapsco aquifer, Atlantic Coastal Plain, Maryland, USA: evidence from radiocarbon, chlorine-36 and helium-4 , 2012, Hydrogeology Journal.

[57]  George F. Pinder,et al.  A digital model for aquifer evaluation , 1970 .

[58]  G. Johnson,et al.  DESCRIPTION OF THE IDWR/UI SNAKE RIVER PLAIN AQUIFER MODEL (SRPAM) , 1999 .

[59]  S. P. Larson Direct solution algorithm for the two-dimensional ground-water flow model , 1978 .

[60]  E. D. Gutentag,et al.  Digital simulation of ground-water flow in the High Plains Aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming , 1986 .

[61]  Roberto Anaya,et al.  Update of the Groundwater Availability Model for the Edwards-Trinity (Plateau) and Pecos Valley Aquifers of Texas , 2011 .

[62]  E. G. Lappala,et al.  Simulated changes in ground-water levels and streamflow resulting from future development (1970 to 2020) in the Platte River basin, Nebraska , 1979 .

[63]  Mark T. Anderson,et al.  Water Availability for the Western United States - Key Scientific Challenges , 2004 .

[64]  George F. Pinder,et al.  Application of the Digital Computer for Aquifer Evaluation , 1968 .

[65]  M. Sophocleous Groundwater recharge and sustainability in the High Plains aquifer in Kansas, USA , 2005 .

[66]  Rao S. Govindaraju,et al.  Development and application of a comprehensive simulation model to evaluate impacts of watershed structures and irrigation water use on streamflow and groundwater: the case of Wet Walnut Creek Watershed, Kansas, USA , 2000 .

[67]  John D. Bredehoeft,et al.  Ground-water models cannot be validated , 1992 .

[68]  Thomas A. Prickett,et al.  Selected digital computer techniques for groundwater resource evaluation , 1971 .

[69]  E. Gutentag,et al.  Effects of future ground-water pumpage on the High Plains aquifer in parts of Colorado , 1988 .

[70]  Stanley A Leake,et al.  The Journey from Safe Yield to Sustainability , 2004, Ground water.

[71]  Susan Tiefenbrun KANSAS CITY (Missouri) , 2012 .

[72]  David E. Prudic,et al.  Ground-water flow in the Central Valley, California , 1985 .

[73]  D. L. Runkle,et al.  STEADY-STATE SIMULATION OF GROUND WATER FLOW IN THE BLAINE AQUIFER, SOUTHWESTERN OKLAHOMA AND NORTHWESTERN TEXAS , 1995 .

[74]  David Tuthill,et al.  The Role of Uncertainty in the Use of Ground Water Models for Administration of Water Rights , 2008 .

[75]  W. Kinzelbach Applied groundwater modeling — Simulation of flow and advective transport , 1992 .

[76]  Barbara A. Cosens The Role of Hydrology in the Resolution of Water Disputes , 2009 .

[77]  Marios Sophocleous,et al.  Methodology and application of combined watershed and ground-water models in Kansas , 2000 .

[78]  J. Gun,et al.  Reconciling Groundwater Storage Depletion Due to Pumping with Sustainability , 2010 .

[79]  D. J. Ackerman Analysis of steady-state flow and advective transport in the Eastern Snake River Plain Aquifer System, Idaho , 1995 .

[80]  S. Carolina GROUND-WATER RESOURCES , 2004 .

[81]  Eloise Kendy,et al.  The False Promise of Sustainable Pumping Rates , 2003, Ground water.

[82]  Andrew W. Western,et al.  Analytical methods for ecosystem resilience: A hydrological investigation , 2012 .

[83]  L. Konikow Contribution of global groundwater depletion since 1900 to sea‐level rise , 2011 .

[84]  J. Stanton,et al.  Simulation of Ground-Water Flow and Effects of Ground-Water Irrigation on Base Flow in the Elkhorn and Loup River Basins, Nebraska , 2008 .

[85]  R. Reedy,et al.  Saturated Thickness in the Ogallala Aquifer in the Panhandle Water Planning Area— Simulation of 2000 through 2050 Withdrawal Projections , 2000 .

[86]  Marios Sophocleous,et al.  From safe yield to sustainable development of water resources—the Kansas experience , 2000 .

[87]  George F. Pinder,et al.  Finite difference model for aquifer simulation in two dimensions with results of numerical experiments , 1976 .

[88]  Wenpeng Li,et al.  A review of regional groundwater flow modeling , 2011 .

[89]  M. Taniguchi,et al.  Towards Sustainable Groundwater Use: Setting Long‐Term Goals, Backcasting, and Managing Adaptively , 2012, Ground water.

[90]  Michael N. Fienen,et al.  Simulation of groundwater flow and effects of groundwater irrigation on stream base flow in the Elkhorn and Loup River Basins, Nebraska, 1895-2055-Phase Two , 2010 .