Salt Reconstruction in Full-Waveform Inversion With a Parametric Level-Set Method

Seismic full-waveform inversion tries to estimate subsurface medium parameters from seismic data. Areas with subsurface salt bodies are of particular interest because they often have hydrocarbon reservoirs on their sides or underneath. Accurate reconstruction of their geometry is a challenge for current techniques. This paper presents a parametric level-set method for the reconstruction of salt-bodies in seismic full-waveform inversion. We split the subsurface model in two parts: a background velocity model and a salt body with known velocity but undetermined shape. The salt geometry is represented by a level-set function that evolves during the inversion. We choose radial basis functions to represent the level-set function, leading to an optimization problem with a modest number of parameters. A common problem with level-set methods is to fine-tune the width of the level-set boundary for optimal sensitivity. We propose a robust algorithm that dynamically adapts the width of the level-set boundary to ensure faster convergence. Tests on a suite of idealized salt geometries show that the proposed method is stable against a modest amount of noise. We also extend the method to joint inversion of both the background velocity model and the salt geometry.

[1]  S. Osher,et al.  Computing interface motion in compressible gas dynamics , 1992 .

[2]  Jean Virieux,et al.  An overview of full-waveform inversion in exploration geophysics , 2009 .

[3]  Qing Huo Liu,et al.  PERFECTLY MATCHED LAYERS FOR ELASTODYNAMICS: A NEW ABSORBING BOUNDARY CONDITION , 1996 .

[4]  Guy Chavent,et al.  Waveform Inversion of Reflection Seismic Data for Kinematic Parameters by Local Optimization , 1998, SIAM J. Sci. Comput..

[5]  S. Operto,et al.  Mixed‐grid and staggered‐grid finite‐difference methods for frequency‐domain acoustic wave modelling , 2004 .

[6]  William W. Symes,et al.  Velocity inversion by differential semblance optimization , 1991 .

[7]  C. Bunks,et al.  Multiscale seismic waveform inversion , 1995 .

[8]  Cornelis Vuik,et al.  Closing the performance gap between an iterative frequency-domain solver and an explicit time-domain scheme for 3D migration on parallel architectures , 2014 .

[9]  J. Carcione,et al.  Seismic modeling , 1942 .

[10]  A. Bayliss,et al.  Radiation boundary conditions for wave-like equations , 1980 .

[11]  R. Pratt Seismic waveform inversion in the frequency domain; Part 1, Theory and verification in a physical scale model , 1999 .

[12]  Hicks,et al.  Gauss–Newton and full Newton methods in frequency–space seismic waveform inversion , 1998 .

[13]  A. Tarantola,et al.  Two‐dimensional nonlinear inversion of seismic waveforms: Numerical results , 1986 .

[14]  Eric L. Miller,et al.  Parametric Level Set Methods for Inverse Problems , 2010, SIAM J. Imaging Sci..

[15]  William W. Symes,et al.  The seismic reflection inverse problem , 2009 .

[16]  J. Pasciak,et al.  Computer solution of large sparse positive definite systems , 1982 .

[17]  Björn Engquist,et al.  Absorbing boundary conditions for wave-equation migration , 1980 .

[18]  K. Marfurt Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations , 1984 .

[19]  C. Shin,et al.  An optimal 9-point, finite-difference, frequency-space, 2-D scalar wave extrapolator , 1996 .

[20]  Romain Brossier,et al.  Modelling Seismic Wave Propagation for Geophysical Imaging , 2012 .

[21]  R. Pratt,et al.  INVERSE THEORY APPLIED TO MULTI‐SOURCE CROSS‐HOLE TOMOGRAPHY.: PART 1: ACOUSTIC WAVE‐EQUATION METHOD1 , 1990 .

[22]  Romain Brossier,et al.  Regularized seismic full waveform inversion with prior model information , 2013 .

[23]  E. Haber,et al.  On optimization techniques for solving nonlinear inverse problems , 2000 .

[24]  Felix J. Herrmann,et al.  Automatic Salt Delineation— Wavefield Reconstruction Inversion with Convex Constraints , 2015 .

[25]  C. Micchelli Interpolation of scattered data: Distance matrices and conditionally positive definite functions , 1986 .

[26]  R. Plessix A review of the adjoint-state method for computing the gradient of a functional with geophysical applications , 2006 .

[27]  Wim A. Mulder,et al.  Full waveform inversion with an auxiliary bump functional , 2016 .

[28]  Jukka Tuomela,et al.  Algebraic Way to Derive Discrete Absorbing Boundary Conditions for Wave Equation , 1996 .

[29]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[30]  Felix J. Herrmann,et al.  An Iterative Multilevel Method For Computing Wavefields In Frequency-domain Seismic Inversion , 2008 .

[31]  J. Carcione,et al.  Seismic modelingSeismic modeling , 2002 .

[32]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[33]  Martin D. Buhmann,et al.  Radial Basis Functions: Theory and Implementations: Preface , 2003 .

[34]  Mauricio D. Sacchi,et al.  Edge-preserving seismic imaging using the total variation method , 2012 .

[35]  Changsoo Shin,et al.  Weighted-Averaging Finite-Element Method for 2D Elastic Wave Equations in the Frequency Domain , 2003 .

[36]  Holger Wendland,et al.  Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree , 1995, Adv. Comput. Math..

[37]  D. Vígh,et al.  A Level Set Approach to Salt Geometry Inversion in Full-Waveform Inversion , 2012 .

[38]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .

[39]  Martin J. Gander,et al.  Why it is Difficult to Solve Helmholtz Problems with Classical Iterative Methods , 2012 .

[40]  C. Tam,et al.  Dispersion-relation-preserving finite difference schemes for computational acoustics , 1993 .

[41]  W. A. Mulder,et al.  E-15 TIME- VERSUS FREQUENCY-DOMAIN MODELLING OF SEISMIC WAVE PROPAGATION , 2002 .

[42]  R. Gerhard Pratt,et al.  Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies , 2004 .

[43]  Felix J. Herrmann,et al.  Mitigating local minima in full-waveform inversion by expanding the search space , 2013 .

[44]  Mark W. Schmidt,et al.  Optimizing Costly Functions with Simple Constraints: A Limited-Memory Projected Quasi-Newton Algorithm , 2009, AISTATS.

[45]  Jianlin Xia,et al.  On 3D modeling of seismic wave propagation via a structured parallel multifrontal direct Helmholtz solver , 2011 .

[46]  Xiong Zhang,et al.  Meshless methods based on collocation with radial basis functions , 2000 .

[47]  Cornelis Vuik,et al.  A new iterative solver for the time-harmonic wave equation , 2006 .

[48]  Lianjie Huang,et al.  Acoustic- and elastic-waveform inversion using a modified total-variation regularization scheme , 2014 .

[49]  Felix J. Herrmann,et al.  A unified 2D/3D software environment for large-scale time-harmonic full-waveform inversion , 2016 .

[50]  Wim A. Mulder,et al.  FAST TRACK PAPER: The exact solution of the time-harmonic wave equation for a linear velocity profile , 2006 .

[51]  I. Štekl,et al.  Accurate viscoelastic modeling by frequency‐domain finite differences using rotated operators , 1998 .

[52]  S. Osher,et al.  Level set methods: an overview and some recent results , 2001 .

[53]  S. Operto,et al.  3D finite-difference frequency-domain modeling of visco-acoustic wave propagation using a massively parallel direct solver: A feasibility study , 2007 .

[54]  M. D. Hoop,et al.  Shape optimization and level set method in full waveform inversion with 3D body reconstruction , 2013 .

[55]  J. Sethian,et al.  FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .

[56]  M. J. D. Powell,et al.  Radial basis functions for multivariable interpolation: a review , 1987 .

[57]  Fadil Santosa,et al.  An analysis of least-squares velocity inversion , 1989 .

[58]  C. Shin,et al.  A frequency‐space 2-D scalar wave extrapolator using extended 25-point finite‐difference operator , 1998 .

[59]  J. Nocedal Updating Quasi-Newton Matrices With Limited Storage , 1980 .

[60]  S. Operto,et al.  Seismic imaging of complex onshore structures by 2D elastic frequency-domain full-waveform inversion , 2009 .