6-DoF velocity estimation using RGB-D camera based on optical flow

In this paper, we suggest a new 6-DoF velocity estimation algorithm using RGB and depth images. Autonomous control of mobile robots requires their velocity information. There exist numerous researches on estimating and measuring the velocity. However, more investigations are needed related to vision sensors and depth image. In this work, we propose an algorithm for velocity estimation with an RGB-D sensor based on image jacobian matrix usually used in image-based visual servoing. We validate the performance of the proposed estimation algorithm in various environments with the RGB-D benchmark dataset. The velocity estimation results show the high quality of estimated 6-DoF velocity compared to the ground truth velocity.

[1]  Julius Ziegler,et al.  StereoScan: Dense 3d reconstruction in real-time , 2011, 2011 IEEE Intelligent Vehicles Symposium (IV).

[2]  H. Jin Kim,et al.  Onboard flight control of a micro quadrotor using single strapdown optical flow sensor , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[3]  Philippe Martin,et al.  The true role of accelerometer feedback in quadrotor control , 2010, 2010 IEEE International Conference on Robotics and Automation.

[4]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[5]  Peter I. Corke,et al.  Multirotor Aerial Vehicles: Modeling, Estimation, and Control of Quadrotor , 2012, IEEE Robotics & Automation Magazine.

[6]  Eric N. Johnson,et al.  A Compact Guidance, Navigation, and Control System for Unmanned Aerial Vehicles , 2006, J. Aerosp. Comput. Inf. Commun..

[7]  Qing Li,et al.  Invariant Observer Design of a RGB-D Aided Inertial System for MAV in GPS-Denied Environments , 2013, 2013 IEEE International Conference on Systems, Man, and Cybernetics.

[8]  Robert C. Bolles,et al.  Outdoor Mapping and Navigation Using Stereo Vision , 2006, ISER.

[9]  Wolfram Burgard,et al.  A benchmark for the evaluation of RGB-D SLAM systems , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[10]  François Chaumette,et al.  Visual servo control. I. Basic approaches , 2006, IEEE Robotics & Automation Magazine.

[11]  Roland Siegwart,et al.  Onboard IMU and monocular vision based control for MAVs in unknown in- and outdoor environments , 2011, 2011 IEEE International Conference on Robotics and Automation.

[12]  Albert S. Huang,et al.  Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera , 2011, ISRR.

[13]  Marc Pollefeys,et al.  Real-time velocity estimation based on optical flow and disparity matching , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[14]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[15]  Philippe Martin,et al.  The role of propeller aerodynamics in the model of a quadrotor UAV , 2009, 2009 European Control Conference (ECC).

[16]  Heinrich H. Bülthoff,et al.  On-board velocity estimation and closed-loop control of a quadrotor UAV based on optical flow , 2012, 2012 IEEE International Conference on Robotics and Automation.

[17]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using unit quaternions , 1987 .

[18]  Aníbal Ollero,et al.  Vision-Based Odometry and SLAM for Medium and High Altitude Flying UAVs , 2009, J. Intell. Robotic Syst..

[19]  Andreas Zell,et al.  Efficient onbard RGBD-SLAM for autonomous MAVs , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[20]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[21]  Ezio Malis,et al.  Improving vision-based control using efficient second-order minimization techniques , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[22]  Rogelio Lozano,et al.  Combining Stereo Vision and Inertial Navigation System for a Quad-Rotor UAV , 2011, J. Intell. Robotic Syst..

[23]  D. Simon Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches , 2006 .

[24]  Albert S. Huang,et al.  Estimation, planning, and mapping for autonomous flight using an RGB-D camera in GPS-denied environments , 2012, Int. J. Robotics Res..

[25]  Timothy W. McLain,et al.  Quadrotors and Accelerometers: State Estimation with an Improved Dynamic Model , 2014, IEEE Control Systems.

[26]  J.-Y. Bouguet,et al.  Pyramidal implementation of the lucas kanade feature tracker , 1999 .