The Numerical Computation of Homoclinic Orbits for Maps

Transversal homoclinic orbits of maps are known to generate shift dynamics on a set with Cantor-like structure. In this paper a numerical method is developed for computation of the corresponding homoclinic orbits. They are approximated by finite-orbit segments subject to asymptotic boundary conditions. We provide a detailed error analysis including a shadowing-type result by which one can infer the existence of a transversal homoclinic orbit from a finite segment. This approach is applied to several examples. In some of them parameters appear and closed loops of homoclinic orbits are found by a path-following algorithm.

[1]  C. Coffman,et al.  Dichotomies for linear difference equations , 1967 .

[2]  Kenneth J. Palmer,et al.  Exponential dichotomies and transversal homoclinic points , 1984 .

[3]  Wolf-Jürgen Beyn,et al.  The effect of discretization on homoclinic orbits , 1987 .

[4]  Mark J. Friedman,et al.  Numerical computation of heteroclinic orbits , 1989 .

[5]  Bernold Fiedler,et al.  Discretization of homoclinic orbits, rapid forcing, and "invisible" chaos , 1996 .

[6]  L. P. Šil'nikov ON A POINCARÉ-BIRKHOFF PROBLEM , 1967 .

[7]  L. Kantorovich,et al.  Functional analysis in normed spaces , 1952 .

[8]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[9]  H. Koçak,et al.  Shadowing orbits of ordinary differential equations , 1994 .

[10]  Mark J. Friedman,et al.  Numerical computation and continuation of invariant manifolds connecting fixed points , 1991 .

[11]  Floris Takens,et al.  Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations : fractal dimensions and infinitely many attractors , 1993 .

[12]  Gene H. Golub,et al.  Matrix computations , 1983 .

[13]  Wolf-Jürgen Beyn,et al.  The Numerical Computation of Connecting Orbits in Dynamical Systems , 1990 .

[14]  J. Hale,et al.  Dynamics and Bifurcations , 1991 .

[15]  Daniel B. Henry Geometric Theory of Semilinear Parabolic Equations , 1989 .

[16]  R. Devaney An Introduction to Chaotic Dynamical Systems , 1990 .

[17]  Wolf-Jürgen Beyn Global Bifurcations and their Numerical Computation , 1990 .

[18]  Eugene L. Allgower,et al.  Numerical continuation methods - an introduction , 1990, Springer series in computational mathematics.

[19]  Kenneth J. Palmer,et al.  Exponential Dichotomies, the Shadowing Lemma and Transversal Homoclinic Points , 1988 .

[20]  S. Smale Differentiable dynamical systems , 1967 .

[21]  G. Vainikko,et al.  Funktionalanalysis der Diskretisierungsmethoden , 1976 .

[22]  A. Neumaier,et al.  Rigorous chaos verification in discrete dynamical systems , 1993 .