An Augmented Mixed Finite Element Method for the Navier-Stokes Equations with Variable Viscosity
暂无分享,去创建一个
Gabriel N. Gatica | Ricardo Oyarzúa | Jessika Camaño | Giordano Tierra | G. Tierra | G. Gatica | Ricardo Oyarzúa | J. Camaño
[1] Zhiqiang Cai,et al. Least-Squares Methods for Linear Elasticity , 2004, SIAM J. Numer. Anal..
[2] W. Wendland,et al. Coupling of mixed finite elements and boundary elements for linear and nonlinear elliptic problems , 1996 .
[3] Salim Meddahi,et al. An augmented mixed finite element method for 3D linear elasticity problems , 2009, J. Comput. Appl. Math..
[4] Shun Zhang,et al. Mixed methods for stationary Navier-Stokes equations based on pseudostress-pressure-velocity formulation , 2012, Math. Comput..
[5] Shuyu Sun,et al. Coupling nonlinear Stokes and Darcy flow using mortar finite elements , 2011 .
[6] G. Burton. Sobolev Spaces , 2013 .
[7] Norbert Heuer,et al. A priori and a posteriori error analysis of an augmented mixed finite element method for incompressible fluid flows , 2008 .
[8] Salim Meddahi,et al. A low-order mixed finite element method for a class of quasi-Newtonian Stokes flows. Part II: a posteriori error analysis , 2004 .
[9] Mohamed Farhloul,et al. A mixed finite element method for a Ladyzhenskaya model , 2002 .
[10] G. Gatica,et al. A low-order mixed finite element method for a class of quasi-Newtonian Stokes flows. Part I: a priori error analysis , 2004 .
[11] S. Nicaise,et al. A priori and a posteriori error estimations for the dual mixed finite element method of the Navier‐Stokes problem , 2009 .
[12] Gabriel N. Gatica,et al. Analysis of an augmented mixed‐primal formulation for the stationary Boussinesq problem , 2016 .
[13] F. Brezzi,et al. Finite dimensional approximation of nonlinear problems , 1981 .
[14] P. G. Ciarlet,et al. Linear and Nonlinear Functional Analysis with Applications , 2013 .
[15] G. Gatica,et al. Analysis of an augmented fully-mixed approach for the coupling of quasi-Newtonian fluids and porous media , 2014 .
[16] Zhiqiang Cai,et al. Pseudostress–velocity formulation for incompressible Navier–Stokes equations , 2010 .
[17] Dominik Schötzau,et al. An exactly divergence-free finite element method for a generalized Boussinesq problem , 2014 .
[18] Jason S. Howell,et al. A dual-mixed approximation method for a three-field model of a nonlinear generalized Stokes problem , 2008 .
[19] Jason S. Howell,et al. DUAL-MIXED FINITE ELEMENT METHODS FOR THE NAVIER-STOKES EQUATIONS , 2013 .
[20] Shun Zhang,et al. Mixed Finite Element Methods for Incompressible Flow: Stationary Navier-Stokes Equations , 2010, SIAM J. Numer. Anal..
[21] G. Gatica,et al. Analysis of a velocity–pressure–pseudostress formulation for the stationary Stokes equations ☆ , 2010 .
[22] Gabriel N. Gatica,et al. Augmented Mixed Finite Element Methods for the Stationary Stokes Equations , 2008, SIAM J. Sci. Comput..
[23] Panayot S. Vassilevski,et al. Mixed finite element methods for incompressible flow: Stationary Stokes equations , 2010 .
[24] Jason S. Howell,et al. Inf–sup conditions for twofold saddle point problems , 2011, Numerische Mathematik.
[25] A. Quarteroni,et al. Numerical Approximation of Partial Differential Equations , 2008 .
[26] G. Gatica. A Simple Introduction to the Mixed Finite Element Method: Theory and Applications , 2014 .
[27] Jason S. Howell,et al. Dual-mixed finite element approximation of Stokes and nonlinear Stokes problems using trace-free velocity gradients , 2009, J. Comput. Appl. Math..
[28] Jean E. Roberts,et al. Mixed and hybrid finite element methods , 1987 .
[29] Gabriel N. Gatica,et al. On the coupled BEM and FEM for a nonlinear exterior Dirichlet problem in R2 , 1992 .
[30] Gabriel N. Gatica,et al. An augmented mixed-primal finite element method for a coupled flow-transport problem , 2015 .
[31] Jindřich Nečas,et al. Introduction to the Theory of Nonlinear Elliptic Equations , 1986 .
[32] Maxim A. Olshanskii,et al. Assessment of a vorticity based solver for the Navier-Stokes equations , 2012 .
[33] R. Codina,et al. Stabilized stress–velocity–pressure finite element formulations of the Navier–Stokes problem for fluids with non-linear viscosity , 2014 .
[34] Gabriel N. Gatica,et al. A priori and a posteriori error analyses of a velocity-pseudostress formulation for a class of quasi-Newtonian Stokes flows , 2011 .
[35] Mohamed Farhloul,et al. Analysis of non-singular solutions of a mixed Navier-Stokes formulation , 1996 .
[36] Ricardo Oyarzúa,et al. Analysis of an augmented mixed-FEM for the Navier-Stokes problem , 2016, Math. Comput..
[37] G. Gatica. An augmented mixed finite element method for linear elasticity with non-homogeneous Dirichlet conditions. , 2007 .
[38] Ping Wang,et al. Least-Squares Methods for Incompressible Newtonian Fluid Flow: Linear Stationary Problems , 2004, SIAM J. Numer. Anal..
[39] Jacques Rappaz,et al. Finite Dimensional Approximation of Non-Linear Problems .1. Branches of Nonsingular Solutions , 1980 .
[40] Shuyu Sun,et al. Coupled Generalized Nonlinear Stokes Flow with Flow through a Porous Medium , 2009, SIAM J. Numer. Anal..