An Augmented Mixed Finite Element Method for the Navier-Stokes Equations with Variable Viscosity

A new mixed variational formulation for the Navier--Stokes equations with constant density and variable viscosity depending nonlinearly on the gradient of velocity, is proposed and analyzed here. Our approach employs a technique previously applied to the stationary Boussinesq problem and to the Navier--Stokes equations with constant viscosity, which consists firstly of the introduction of a modified pseudostress tensor involving the diffusive and convective terms, and the pressure. Next, by using an equivalent statement suggested by the incompressibility condition, the pressure is eliminated, and in order to handle the nonlinear viscosity, the gradient of velocity is incorporated as an auxiliary unknown. Furthermore, since the convective term forces the velocity to live in a smaller space than usual, we overcome this difficulty by augmenting the variational formulation with suitable Galerkin-type terms arising from the constitutive and equilibrium equations, the aforementioned relation defining the additi...

[1]  Zhiqiang Cai,et al.  Least-Squares Methods for Linear Elasticity , 2004, SIAM J. Numer. Anal..

[2]  W. Wendland,et al.  Coupling of mixed finite elements and boundary elements for linear and nonlinear elliptic problems , 1996 .

[3]  Salim Meddahi,et al.  An augmented mixed finite element method for 3D linear elasticity problems , 2009, J. Comput. Appl. Math..

[4]  Shun Zhang,et al.  Mixed methods for stationary Navier-Stokes equations based on pseudostress-pressure-velocity formulation , 2012, Math. Comput..

[5]  Shuyu Sun,et al.  Coupling nonlinear Stokes and Darcy flow using mortar finite elements , 2011 .

[6]  G. Burton Sobolev Spaces , 2013 .

[7]  Norbert Heuer,et al.  A priori and a posteriori error analysis of an augmented mixed finite element method for incompressible fluid flows , 2008 .

[8]  Salim Meddahi,et al.  A low-order mixed finite element method for a class of quasi-Newtonian Stokes flows. Part II: a posteriori error analysis , 2004 .

[9]  Mohamed Farhloul,et al.  A mixed finite element method for a Ladyzhenskaya model , 2002 .

[10]  G. Gatica,et al.  A low-order mixed finite element method for a class of quasi-Newtonian Stokes flows. Part I: a priori error analysis , 2004 .

[11]  S. Nicaise,et al.  A priori and a posteriori error estimations for the dual mixed finite element method of the Navier‐Stokes problem , 2009 .

[12]  Gabriel N. Gatica,et al.  Analysis of an augmented mixed‐primal formulation for the stationary Boussinesq problem , 2016 .

[13]  F. Brezzi,et al.  Finite dimensional approximation of nonlinear problems , 1981 .

[14]  P. G. Ciarlet,et al.  Linear and Nonlinear Functional Analysis with Applications , 2013 .

[15]  G. Gatica,et al.  Analysis of an augmented fully-mixed approach for the coupling of quasi-Newtonian fluids and porous media , 2014 .

[16]  Zhiqiang Cai,et al.  Pseudostress–velocity formulation for incompressible Navier–Stokes equations , 2010 .

[17]  Dominik Schötzau,et al.  An exactly divergence-free finite element method for a generalized Boussinesq problem , 2014 .

[18]  Jason S. Howell,et al.  A dual-mixed approximation method for a three-field model of a nonlinear generalized Stokes problem , 2008 .

[19]  Jason S. Howell,et al.  DUAL-MIXED FINITE ELEMENT METHODS FOR THE NAVIER-STOKES EQUATIONS , 2013 .

[20]  Shun Zhang,et al.  Mixed Finite Element Methods for Incompressible Flow: Stationary Navier-Stokes Equations , 2010, SIAM J. Numer. Anal..

[21]  G. Gatica,et al.  Analysis of a velocity–pressure–pseudostress formulation for the stationary Stokes equations ☆ , 2010 .

[22]  Gabriel N. Gatica,et al.  Augmented Mixed Finite Element Methods for the Stationary Stokes Equations , 2008, SIAM J. Sci. Comput..

[23]  Panayot S. Vassilevski,et al.  Mixed finite element methods for incompressible flow: Stationary Stokes equations , 2010 .

[24]  Jason S. Howell,et al.  Inf–sup conditions for twofold saddle point problems , 2011, Numerische Mathematik.

[25]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[26]  G. Gatica A Simple Introduction to the Mixed Finite Element Method: Theory and Applications , 2014 .

[27]  Jason S. Howell,et al.  Dual-mixed finite element approximation of Stokes and nonlinear Stokes problems using trace-free velocity gradients , 2009, J. Comput. Appl. Math..

[28]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[29]  Gabriel N. Gatica,et al.  On the coupled BEM and FEM for a nonlinear exterior Dirichlet problem in R2 , 1992 .

[30]  Gabriel N. Gatica,et al.  An augmented mixed-primal finite element method for a coupled flow-transport problem , 2015 .

[31]  Jindřich Nečas,et al.  Introduction to the Theory of Nonlinear Elliptic Equations , 1986 .

[32]  Maxim A. Olshanskii,et al.  Assessment of a vorticity based solver for the Navier-Stokes equations , 2012 .

[33]  R. Codina,et al.  Stabilized stress–velocity–pressure finite element formulations of the Navier–Stokes problem for fluids with non-linear viscosity , 2014 .

[34]  Gabriel N. Gatica,et al.  A priori and a posteriori error analyses of a velocity-pseudostress formulation for a class of quasi-Newtonian Stokes flows , 2011 .

[35]  Mohamed Farhloul,et al.  Analysis of non-singular solutions of a mixed Navier-Stokes formulation , 1996 .

[36]  Ricardo Oyarzúa,et al.  Analysis of an augmented mixed-FEM for the Navier-Stokes problem , 2016, Math. Comput..

[37]  G. Gatica An augmented mixed finite element method for linear elasticity with non-homogeneous Dirichlet conditions. , 2007 .

[38]  Ping Wang,et al.  Least-Squares Methods for Incompressible Newtonian Fluid Flow: Linear Stationary Problems , 2004, SIAM J. Numer. Anal..

[39]  Jacques Rappaz,et al.  Finite Dimensional Approximation of Non-Linear Problems .1. Branches of Nonsingular Solutions , 1980 .

[40]  Shuyu Sun,et al.  Coupled Generalized Nonlinear Stokes Flow with Flow through a Porous Medium , 2009, SIAM J. Numer. Anal..