Experimental Evaluation of Dynamic Operating Concepts for Alkaline Water Electrolyzers Powered by Renewable Energy

[1]  H. Bindner,et al.  Optimal day-ahead dispatch of an alkaline electrolyser system concerning thermal–electric properties and state-transitional dynamics , 2021, Applied Energy.

[2]  S. Saha,et al.  Modeling of Thermal Performance of a Commercial Alkaline electrolyzer Supplied with Various Electrical Currents , 2021, International Journal of Thermofluids.

[3]  W. Lehnert,et al.  Review—Challenges and Opportunities for Increased Current Density in Alkaline Electrolysis by Increasing the Operating Temperature , 2021, Journal of The Electrochemical Society.

[4]  Jin Lin,et al.  Pressure control strategy to extend the loading range of an alkaline electrolysis system , 2021, International Journal of Hydrogen Energy.

[5]  Sanggyu Kang,et al.  Numerical modeling and analysis of the temperature effect on the performance of an alkaline water electrolysis system , 2021 .

[6]  J. Jäschke,et al.  Design considerations for industrial water electrolyzer plants , 2021, International Journal of Hydrogen Energy.

[7]  Sanggyu Kang,et al.  Numerical modeling and analysis of the effect of pressure on the performance of an alkaline water electrolysis system , 2021 .

[8]  T. Turek,et al.  Battery‐Buffered Alkaline Water Electrolysis Powered by Photovoltaics , 2021 .

[9]  H. Rajaei,et al.  Electro-osmotic flow and the limiting current in alkaline water electrolysis , 2020 .

[10]  J. Haverkort Modeling and Experiments of Binary Electrolytes in the Presence of Diffusion, Migration, and Electro-Osmotic Flow , 2020, Physical Review Applied.

[11]  C. Ocampo‐Martinez,et al.  Dynamic modelling of alkaline self-pressurized electrolyzers: a phenomenological-based semiphysical approach , 2020, International Journal of Hydrogen Energy.

[12]  G. Wehinger,et al.  Modeling the Dynamic Power‐to‐Gas Process: Coupling Electrolysis with CO 2 Methanation , 2020 .

[13]  ENVIRONMENTAL CHARACTERISTICS , 2020, Cognitive Satellite System.

[14]  Zi Lin,et al.  A Critical Review of Wind Power Forecasting Methods—Past, Present and Future , 2020, Energies.

[15]  T. Turek,et al.  Alkaline Water Electrolysis Powered by Renewable Energy: A Review , 2020, Processes.

[16]  Zhe Chen,et al.  Availability estimation of wind power forecasting and optimization of day-ahead unit commitment , 2019, Journal of Modern Power Systems and Clean Energy.

[17]  L. Hontoria,et al.  An Improved Method for Obtaining Solar Irradiation Data at Temporal High-Resolution , 2019, Sustainability.

[18]  M. Benbouzid,et al.  Review of necessary thermophysical properties and their sensivities with temperature and electrolyte mass fractions for alkaline water electrolysis multiphysics modelling , 2019, International Journal of Hydrogen Energy.

[19]  Pedro G. Lind,et al.  Wind Speed Modeling by Nested ARIMA Processes , 2018, Energies.

[20]  Carmen Clemente-Jul,et al.  Semi-empirical model and experimental validation for the performance evaluation of a 15 kW alkaline water electrolyzer , 2018, International Journal of Hydrogen Energy.

[21]  Rizwan Rafique,et al.  Renewable Generation (Wind/Solar) and Load Modeling through Modified Fuzzy Prediction Interval , 2018 .

[22]  F. Mojica,et al.  Experimental study and analytical modeling of an alkaline water electrolysis cell , 2017 .

[23]  Z. Abdin,et al.  Modelling and simulation of an alkaline electrolyser cell , 2017 .

[24]  Martin Kumar Patel,et al.  An interdisciplinary review of energy storage for communities: Challenges and perspectives , 2017 .

[25]  P. Haug,et al.  Process modelling of an alkaline water electrolyzer , 2017 .

[26]  M. Belusko,et al.  Generating synthetic five-minute solar irradiance values from hourly observations , 2017 .

[27]  César de Prada,et al.  Predictive control for hydrogen production by electrolysis in an offshore platform using renewable energies , 2017 .

[28]  T. Turek,et al.  Influence of process conditions on gas purity in alkaline water electrolysis , 2017 .

[29]  Cristian Rabiti,et al.  Synthetic wind speed scenarios generation for probabilistic analysis of hybrid energy systems , 2017 .

[30]  Pablo Sanchis,et al.  Integration of commercial alkaline water electrolysers with renewable energies: Limitations and improvements , 2016 .

[31]  Claudia Roberta Calidonna,et al.  Three-model ensemble wind prediction in southern Italy , 2016 .

[32]  Christopher J. Smith,et al.  Stochastic generation of synthetic minutely irradiance time series derived from mean hourly weather observation data , 2015 .

[33]  Jesus Rodriguez,et al.  Influence of operation parameters in the modeling of alkaline water electrolyzers for hydrogen production , 2014 .

[34]  Fokko M. Mulder,et al.  Implications of diurnal and seasonal variations in renewable energy generation for large scale energy storage , 2014 .

[35]  Kodjo Agbossou,et al.  Simulation tool based on a physics model and an electrical analogy for an alkaline electrolyser , 2014 .

[36]  Arianna Naimo,et al.  A Novel Approach to Generate Synthetic Wind Data , 2014 .

[37]  Pablo Sanchis,et al.  Stand-alone operation of an alkaline water electrolyser fed by wind and photovoltaic systems , 2013 .

[38]  P. Sanchis,et al.  Static-dynamic modelling of the electrical behaviour of a commercial advanced alkaline water electrolyser , 2012 .

[39]  Mamadou Lamine Doumbia,et al.  New multi-physics approach for modelling and design of alkaline electrolyzers , 2012 .

[40]  L. Zarzalejo,et al.  A simple approach to the synthetic generation of solar irradiance time series with high temporal resolution , 2011 .

[41]  P. M. Diéguez,et al.  Thermal performance of a commercial alkaline water electrolyzer: Experimental study and mathematical modeling , 2008 .

[42]  Javier Contreras,et al.  Optimization of control strategies for stand-alone renewable energy systems with hydrogen storage , 2007 .

[43]  P. M. Diéguez,et al.  Renewable Hydrogen Production: Performance of an Alkaline Water Electrolyzer Working under Emulated Wind Conditions , 2007 .

[44]  Steven J. Thorpe,et al.  A review of specific conductivities of potassium hydroxide solutions for various concentrations and temperatures , 2007 .

[45]  S. Watson,et al.  Comparison of electrical energy efficiency of atmospheric and high-pressure electrolysers , 2006 .

[46]  B. Emonts,et al.  Explosion Limits of Hydrogen/Oxygen Mixtures at Initial Pressures up to 200 bar , 2004 .

[47]  K. Onda,et al.  Prediction of Production Power for High-pressure Hydrogen by High-pressure Water Electrolysis , 2004 .

[48]  W Hug,et al.  Intermittent operation and operation modeling of an alkaline electrolyzer , 1993 .

[49]  M. Collares-Pereira,et al.  TAG: A time-dependent, autoregressive, Gaussian model for generating synthetic hourly radiation , 1992 .

[50]  J. Mergel,et al.  Highly efficient advanced alkaline electrolyzer for solar operation , 1992 .

[51]  A. Brett,et al.  The Autocorrelation of Hourly Wind Speed Observations , 1991 .

[52]  K. Gubbins,et al.  Salting out of nonpolar gases in aqueous potassium hydroxide solutions. , 1969 .

[53]  K. Bouzek,et al.  Evaluation of Diaphragms and Membranes as Separators for Alkaline Water Electrolysis , 2021, Journal of the Electrochemical Society.

[54]  C. Ocampo‐Martinez,et al.  H2 purity control of high-pressure alkaline electrolyzers , 2021, IFAC-PapersOnLine.

[55]  R. Hanke-Rauschenbach,et al.  Hydrogen Crossover in PEM and Alkaline Water Electrolysis: Mechanisms, Direct Comparison and Mitigation Strategies , 2018 .

[56]  Peng Guo,et al.  A Review of Wind Power Forecasting Models , 2011 .

[57]  Ø. Ulleberg Modeling of advanced alkaline electrolyzers: a system simulation approach , 2003 .

[58]  K. Hollands,et al.  A method to generate synthetic hourly solar radiation globally , 1990 .

[59]  D. Himmelblau Solubilities of Inert Gases in Water. 0° C. to Near the Critical Point of Water. , 1960 .