Hurst–Kolmogorov dynamics as a result of extremal entropy production

It is demonstrated that extremization of entropy production of stochastic representations of natural systems, performed at asymptotic times (zero or infinity) results in constant derivative of entropy in logarithmic time and, in turn, in Hurst–Kolmogorov processes. The constraints used include preservation of the mean, variance and lag-1 autocovariance at the observation time step, and an inequality relationship between conditional and unconditional entropy production, which is necessary to enable physical consistency. An example with real world data illustrates the plausibility of the findings.

[1]  T. Charlton Progress in Solid Mechanics , 1962, Nature.

[2]  Sheldon Goldstein,et al.  JOURNAL OF STATISTICAL PHYSICS Vol.67, Nos.5/6, June 1992 QUANTUM EQUILIBRIUM AND The , 2002 .

[3]  A. Porporato,et al.  Irreversibility and fluctuation theorem in stationary time series. , 2007, Physical review letters.

[4]  Demetris Koutsoyiannis,et al.  Statistical analysis of hydroclimatic time series: Uncertainty and insights , 2007 .

[5]  Demetris Koutsoyiannis The Hurst phenomenon and fractional Gaussian noise made easy , 2002 .

[6]  Peter Atkins,et al.  Four Laws That Drive the Universe , 2007 .

[7]  Demetris Koutsoyiannis,et al.  Uncertainty, entropy, scaling and hydrological stochastics. 2. Time dependence of hydrological processes and time scaling / Incertitude, entropie, effet d'échelle et propriétés stochastiques hydrologiques. 2. Dépendance temporelle des processus hydrologiques et échelle temporelle , 2005 .

[8]  S. Karlin,et al.  A second course in stochastic processes , 1981 .

[9]  S. Havlin,et al.  Indication of a Universal Persistence Law Governing Atmospheric Variability , 1998 .

[10]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[11]  H. S. Leff,et al.  Four Laws That Drive the Universe , 2007 .

[12]  E. Jaynes Probability theory : the logic of science , 2003 .

[13]  Shlomo Havlin,et al.  Power-law persistence in the atmosphere and in the oceans , 2002 .

[14]  Walter Willinger,et al.  On the self-similar nature of Ethernet traffic , 1993, SIGCOMM '93.

[15]  J. E. Llebot,et al.  Extremal principle of entropy production in the climate system , 1999 .

[16]  C. Tsallis Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World , 2009 .

[17]  S. Havlin,et al.  Correlated and uncorrelated regions in heart-rate fluctuations during sleep. , 2000, Physical review letters.

[18]  A. Ohmura,et al.  The second law of thermodynamics and the global climate system: A review of the maximum entropy production principle , 2003 .

[19]  R. Baierlein Probability Theory: The Logic of Science , 2004 .

[20]  Aarnout Brombacher,et al.  Probability... , 2009, Qual. Reliab. Eng. Int..

[21]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[22]  Andrew G. Glen,et al.  APPL , 2001 .

[23]  Demetris Koutsoyiannis,et al.  HESS Opinions "A random walk on water" , 2009 .

[24]  Bruxelles Palais des Académies Bulletin de la Classe des sciences. , 1973 .

[25]  Thomas Lux,et al.  Long-term stochastic dependence in financial prices: evidence from the German stock market , 1996 .

[26]  B. Mandelbrot A Fast Fractional Gaussian Noise Generator , 1971 .

[27]  Shamik Gupta,et al.  Thermodynamics and dynamics of systems with long-range interactions , 2010, 1001.1479.

[28]  Chennat Gopalakrishnan On Entropy , 2009 .

[29]  L. Martyushev,et al.  Maximum entropy production principle in physics, chemistry and biology , 2006 .

[30]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .