A useful strong lower bound on two-qubit concurrence
暂无分享,去创建一个
[1] Transport of entanglement through a Heisenberg¿XY spin chain , 2004, quant-ph/0409048.
[2] Lov K. Grover. Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.
[3] Ting Yu,et al. Evolution from entanglement to decoherence of bipartite mixed "X" states , 2005, Quantum Inf. Comput..
[4] A. Uhlmann. Entropy and Optimal Decompositions of States Relative to a Maximal Commutative Subalgebra , 1997, quant-ph/9704017.
[5] N. Gisin. Bell's inequality holds for all non-product states , 1991 .
[6] Charles H. Bennett,et al. Quantum cryptography without Bell's theorem. , 1992, Physical review letters.
[7] Xiaoguang Wang. Entanglement in the quantum Heisenberg XY model , 2001 .
[8] M. Popp,et al. Localizable Entanglement , 2004 .
[9] W. Wootters. Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.
[10] Pérès. Separability Criterion for Density Matrices. , 1996, Physical review letters.
[11] Deutsch,et al. Quantum Privacy Amplification and the Security of Quantum Cryptography over Noisy Channels. , 1996, Physical review letters.
[12] Charles H. Bennett,et al. Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[13] Vladimir E. Korepin,et al. Localizable entanglement in antiferromagnetic spin chains , 2003 .
[14] M. Ban. Entanglement, phase correlation and dephasing of two-qubit states , 2008 .
[15] Ekert,et al. Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.
[16] Claus Kiefer,et al. Decoherence: Concepts and examples , 1999 .
[17] Michal Horodecki,et al. Entanglement measures , 2001, Quantum Inf. Comput..
[18] Charles H. Bennett,et al. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.
[19] J I Cirac,et al. Entanglement versus correlations in spin systems. , 2004, Physical review letters.
[20] Lov K. Grover,et al. Quantum computation , 1999, Proceedings Twelfth International Conference on VLSI Design. (Cat. No.PR00013).
[21] W. Wootters,et al. Entanglement of a Pair of Quantum Bits , 1997, quant-ph/9703041.
[22] V. Korepin,et al. Localizable entanglement in antiferromagnetic spin chains (9 pages) , 2004 .
[23] Peter W. Shor,et al. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..
[24] J. Silva-Valencia,et al. Concurrence of finite Ising chains with the Dzyaloshinsky–Moriya interaction , 2010 .
[25] M. Jafarpour,et al. A Probability Measure for Entanglement of Pure Two-Qubit Systems and a Useful Interpretation for Concurrence , 2011 .
[26] E. Rains. RIGOROUS TREATMENT OF DISTILLABLE ENTANGLEMENT , 1998, quant-ph/9809078.
[27] G. Vidal,et al. Computable measure of entanglement , 2001, quant-ph/0102117.
[28] Charles H. Bennett,et al. Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[29] M. Jafarpour,et al. Entanglement and squeezing of multi-qubit systems using a two-axis countertwisting Hamiltonian with an external field , 2008 .
[30] D. Teresi,et al. Thermal localizable entanglement in a simple multipartite system , 2009 .
[31] Charles H. Bennett,et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.
[32] F. Verstraete,et al. Numerical Computation of Localizable Entanglement in Spin Chains , 2006 .
[33] M. Plenio,et al. Quantifying Entanglement , 1997, quant-ph/9702027.