Commande robuste d'un effecteur par une interface cerveau machine EEG asynchrone

Cette these a pour but le developpement d’une Interface cerveau-machine (ICM) a partir de la mesure EEG,permettant a l’utilisateur de communiquer avec un dispositif externe directement par l’intermediaire de son activite cerebrale. Ces travaux ont ete menes avec comme ligne directrice le developpement d'un systeme d'ICM utilisable dans un contexte de vie courante, le but etant de realiser une ICM simple d'utilisation, robuste et ergonomique, permettant le controle d'un effecteur avec un temps de calibration minimal.Un brain-switch ou interrupteur cerebral a ete realise et permet a l'utilisateur d'envoyer une commande binaire. La realisation d'une telle ICM implique le developpement d'algorithmes robustes et leurs mises en œuvre experimentales. Les travaux realises comportent deux volets, l'un concerne le developpement de nouveaux algorithmes, l'autre concerne la realisation de campagne de tests.

[1]  J. Millán,et al.  Error-related EEG potentials in brain-computer interfaces , 2007 .

[2]  Miguel Castelo-Branco,et al.  Visual P300-based BCI to steer a wheelchair: A Bayesian approach , 2008, 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[3]  Brendan Z. Allison,et al.  The Hybrid BCI , 2010, Frontiers in Neuroscience.

[4]  J.J. Vidal,et al.  Real-time detection of brain events in EEG , 1977, Proceedings of the IEEE.

[5]  Frédéric Barbaresco,et al.  Interactions between Symmetric Cone and Information Geometries: Bruhat-Tits and Siegel Spaces Models for High Resolution Autoregressive Doppler Imagery , 2009, ETVC.

[6]  F. Barbaresco Innovative tools for radar signal processing Based on Cartan’s geometry of SPD matrices & Information Geometry , 2008, 2008 IEEE Radar Conference.

[7]  Tao Geng,et al.  A 3-class Asynchronous BCI Controlling A Simulated Mobile Robot , 2007, 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[8]  H. Akaike A new look at the statistical model identification , 1974 .

[9]  R. Ward,et al.  Robust Common Spatial Patterns for EEG signal preprocessing , 2008, 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[10]  Katrien van Driessen,et al.  A Fast Algorithm for the Minimum Covariance Determinant Estimator , 1999, Technometrics.

[11]  Haihong Zhang,et al.  A Brain-Controlled Wheelchair Based on P300 and Path Guidance , 2006, The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006. BioRob 2006..

[12]  Y. Benjamini,et al.  Multiple Hypotheses Testing with Weights , 1997 .

[13]  G Pfurtscheller,et al.  Visualization of significant ERD/ERS patterns in multichannel EEG and ECoG data , 2002, Clinical Neurophysiology.

[14]  Gary E. Birch,et al.  The LF-ASD brain computer interface: on-line identification of imagined finger flexions in the spontaneous EEG of able-bodied subjects , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[15]  Jun Lv,et al.  Common Spatial Pattern and Particle Swarm Optimization for Channel Selection in BCI , 2008, 2008 3rd International Conference on Innovative Computing Information and Control.

[16]  Gary E. Birch,et al.  Enhancing the performance of the LF-ASD brain-computer interface , 2002, Proceedings of the Second Joint 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society] [Engineering in Medicine and Biology.

[17]  Paolo Castiglioni,et al.  To feedback or Not to Feedback? Some Open Questions for Brain-Computer Interfaces Use , 2009 .

[18]  Christa Neuper,et al.  Non-invasive control of neuroprostheses for the upper extremity: Temporal coding of brain patterns , 2009, 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[19]  E. Edgington A Normal Curve Method for Combining Probability Values from Independent Experiments , 1972 .

[20]  Vera Kaiser,et al.  Fast set-up asynchronous brain-switch based on detection of foot motor imagery in 1-channel EEG , 2010, Medical & Biological Engineering & Computing.

[21]  Stephane Bonnet,et al.  Réalisation d'un Brain-Switch EEG par Géométrie Riemannienne , 2011 .

[22]  Hichem Snoussi,et al.  Monte Carlo Tracking on the Riemannian Manifold of Multivariate Normal Distributions , 2009, 2009 IEEE 13th Digital Signal Processing Workshop and 5th IEEE Signal Processing Education Workshop.

[23]  Fatih Murat Porikli,et al.  Pedestrian Detection via Classification on Riemannian Manifolds , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  D J McFarland,et al.  An EEG-based brain-computer interface for cursor control. , 1991, Electroencephalography and clinical neurophysiology.

[25]  Fatih Murat Porikli,et al.  Human Detection via Classification on Riemannian Manifolds , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[26]  G. Pfurtscheller,et al.  Self-Paced Operation of an SSVEP-Based Orthosis With and Without an Imagery-Based “Brain Switch:” A Feasibility Study Towards a Hybrid BCI , 2010, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[27]  Dinh Tuan Pham,et al.  Joint Approximate Diagonalization of Positive Definite Hermitian Matrices , 2000, SIAM J. Matrix Anal. Appl..

[28]  A. Graser,et al.  Brain-Computer Interface for high-level control of rehabilitation robotic systems , 2007, 2007 IEEE 10th International Conference on Rehabilitation Robotics.

[29]  G. Birch,et al.  Initial on-line evaluations of the LF-ASD brain-computer interface with able-bodied and spinal-cord subjects using imagined voluntary motor potentials , 2002, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[30]  Christian Jutten,et al.  Common Spatial Pattern revisited by Riemannian geometry , 2010, 2010 IEEE International Workshop on Multimedia Signal Processing.

[31]  N. Birbaumer,et al.  An auditory oddball (P300) spelling system for brain-computer interfaces. , 2009, Psychophysiology.

[32]  Cédric Gouy-Pailler Vers une modélisation dynamique de l'activité cérébrale pour la conception d'interfaces cerveau-machines asynchrones. (Toward dynamical models of brain activity for the design of brain-computer interfaces) , 2009 .

[33]  Christian Mandel,et al.  Navigating a smart wheelchair with a brain-computer interface interpreting steady-state visual evoked potentials , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[34]  J. A. Wilson,et al.  Two-dimensional movement control using electrocorticographic signals in humans , 2008, Journal of neural engineering.

[35]  P. Thomas Fletcher,et al.  Principal Geodesic Analysis on Symmetric Spaces: Statistics of Diffusion Tensors , 2004, ECCV Workshops CVAMIA and MMBIA.

[36]  Chia-Wei Sun,et al.  An SSVEP-Actuated Brain Computer Interface Using Phase-Tagged Flickering Sequences: A Cursor System , 2010, Annals of Biomedical Engineering.

[37]  A. Graser,et al.  Low level control in a semi-autonomous rehabilitation robotic system via a Brain-Computer Interface , 2007, 2007 IEEE 10th International Conference on Rehabilitation Robotics.

[38]  H. Duffau,et al.  IRM fonctionnelle cérébrale : bases physiologiques, techniques et applications cliniques , 2007 .

[39]  Dennis J. McFarland,et al.  Brain–computer interfaces for communication and control , 2002, Clinical Neurophysiology.

[40]  C.W. Anderson,et al.  Comparison of linear, nonlinear, and feature selection methods for EEG signal classification , 2003, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[41]  Xiaorong Gao,et al.  A Human Computer Interface Using SSVEP-Based BCI Technology , 2007, HCI.

[42]  Maher Moakher,et al.  A Differential Geometric Approach to the Geometric Mean of Symmetric Positive-Definite Matrices , 2005, SIAM J. Matrix Anal. Appl..

[43]  Gary E. Birch,et al.  Sparse spatial filter optimization for EEG channel reduction in brain-computer interface , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[44]  Yijun Wang,et al.  Common Spatial Pattern Method for Channel Selelction in Motor Imagery Based Brain-computer Interface , 2005, 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference.

[45]  Iñaki Iturrate,et al.  Synchronous EEG brain-actuated wheelchair with automated navigation , 2009, 2009 IEEE International Conference on Robotics and Automation.

[46]  Wassim Jouini,et al.  Log-normal approximation of chi-square distributions for signal processing , 2011, 2011 XXXth URSI General Assembly and Scientific Symposium.

[47]  Klaus-Robert Müller,et al.  Spatio-spectral filters for improving the classification of single trial EEG , 2005, IEEE Transactions on Biomedical Engineering.

[48]  G. Pfurtscheller,et al.  Could the beta rebound in the EEG be suitable to realize a “brain switch”? , 2009, Clinical Neurophysiology.

[49]  Arthur E. Hoerl,et al.  Ridge Regression: Biased Estimation for Nonorthogonal Problems , 2000, Technometrics.

[50]  Haixian Wang Optimizing spatial filters for single-trial EEG classification via a discriminant extension to CSP: the Fisher criterion , 2011, Medical & Biological Engineering & Computing.

[51]  Cuntai Guan,et al.  Filter Bank Common Spatial Pattern (FBCSP) in Brain-Computer Interface , 2008, 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence).

[52]  K. Strimmer,et al.  Statistical Applications in Genetics and Molecular Biology A Shrinkage Approach to Large-Scale Covariance Matrix Estimation and Implications for Functional Genomics , 2011 .

[53]  K. Müller,et al.  Predicting BCI performance to study BCI illiteracy , 2009, BMC Neuroscience.

[54]  Miguel A. L. Nicolelis,et al.  Brain–machine interfaces: past, present and future , 2006, Trends in Neurosciences.

[55]  Febo Cincotti,et al.  Vibrotactile Feedback for Brain-Computer Interface Operation , 2007, Comput. Intell. Neurosci..

[56]  Mariana S Fernandes,et al.  Hydrogel-based photonic sensor for a biopotential wearable recording system. , 2010, Biosensors & bioelectronics.

[57]  Guillaume Gibert,et al.  xDAWN Algorithm to Enhance Evoked Potentials: Application to Brain–Computer Interface , 2009, IEEE Transactions on Biomedical Engineering.

[58]  M Congedo,et al.  sw-SVM: sensor weighting support vector machines for EEG-based brain–computer interfaces , 2011, Journal of neural engineering.

[59]  M. Nuttin,et al.  Asynchronous non-invasive brain-actuated control of an intelligent wheelchair , 2009, 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[60]  Bernhard Schölkopf,et al.  Support vector channel selection in BCI , 2004, IEEE Transactions on Biomedical Engineering.

[61]  J. Polich Updating P300: An integrative theory of P3a and P3b , 2007, Clinical Neurophysiology.

[62]  Simon P. Kelly,et al.  Visual spatial attention control in an independent brain-computer interface , 2005, IEEE Transactions on Biomedical Engineering.

[63]  A. Villringer,et al.  Near infrared spectroscopy (NIRS): A new tool to study hemodynamic changes during activation of brain function in human adults , 1993, Neuroscience Letters.

[64]  C. Herrmann Human EEG responses to 1–100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena , 2001, Experimental Brain Research.

[65]  R Chavarriaga,et al.  Learning From EEG Error-Related Potentials in Noninvasive Brain-Computer Interfaces , 2010, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[66]  Thilo Hinterberger,et al.  Auditory Feedback of Human EEG for Direct Brain-Computer Communication , 2004, ICAD.

[67]  Dean J Krusienski,et al.  Emulation of computer mouse control with a noninvasive brain–computer interface , 2008, Journal of neural engineering.

[68]  Jie Li,et al.  Incremental Common Spatial Pattern algorithm for BCI , 2008, 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence).

[69]  P. Thomas Fletcher,et al.  Principal geodesic analysis for the study of nonlinear statistics of shape , 2004, IEEE Transactions on Medical Imaging.

[70]  José del R. Millán,et al.  Noninvasive brain-actuated control of a mobile robot by human EEG , 2004, IEEE Transactions on Biomedical Engineering.

[71]  O. Bai,et al.  A motor imagery-based online interactive brain-controlled switch: Paradigm development and preliminary test , 2010, Clinical Neurophysiology.

[72]  Gary E. Birch,et al.  Brain-computer interface design for asynchronous control applications: improvements to the LF-ASD asynchronous brain switch , 2004, IEEE Transactions on Biomedical Engineering.

[73]  Shirley Coyle,et al.  On the suitability of near-infrared (NIR) systems for next-generation brain-computer interfaces. , 2004, Physiological measurement.

[74]  J J Vidal,et al.  Toward direct brain-computer communication. , 1973, Annual review of biophysics and bioengineering.

[75]  Cuntai Guan,et al.  Regularizing Common Spatial Patterns to Improve BCI Designs: Unified Theory and New Algorithms , 2011, IEEE Transactions on Biomedical Engineering.

[76]  G. Vanacker,et al.  Adaptive Shared Control of a Brain-Actuated Simulated Wheelchair , 2007, 2007 IEEE 10th International Conference on Rehabilitation Robotics.

[77]  A. Cichocki,et al.  Steady-state visually evoked potentials: Focus on essential paradigms and future perspectives , 2010, Progress in Neurobiology.

[78]  L. Skovgaard A Riemannian geometry of the multivariate normal model , 1984 .

[79]  Jason Farquhar,et al.  2009 Special Issue: A linear feature space for simultaneous learning of spatio-spectral filters in BCI , 2009 .

[80]  Dinh-Tuan Pham,et al.  Blind separation of instantaneous mixtures of nonstationary sources , 2001, IEEE Trans. Signal Process..

[81]  F. L. D. Silva,et al.  Event-related EEG/MEG synchronization and desynchronization: basic principles , 1999, Clinical Neurophysiology.

[82]  G. Pfurtscheller,et al.  Optimal spatial filtering of single trial EEG during imagined hand movement. , 2000, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[83]  M Fatourechi,et al.  A self-paced brain–computer interface system with a low false positive rate , 2008, Journal of neural engineering.

[84]  M. Sarcinelli-Filho,et al.  Teleoperation of an Industrial Manipulator Through a TCP/IP Channel Using EEG Signals , 2006, 2006 IEEE International Symposium on Industrial Electronics.

[85]  Benjamin Blankertz,et al.  Towards a Cure for BCI Illiteracy , 2009, Brain Topography.

[86]  Stefan Haufe,et al.  Single-trial analysis and classification of ERP components — A tutorial , 2011, NeuroImage.

[87]  Nicholas Ayache,et al.  Geometric Means in a Novel Vector Space Structure on Symmetric Positive-Definite Matrices , 2007, SIAM J. Matrix Anal. Appl..

[88]  Trevor Hastie,et al.  Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.

[89]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[90]  C. Jutten,et al.  A Brain-Switch using Riemannian Geometry , 2011 .

[91]  Stephane Bonnet,et al.  Filtrage spatial robuste à partir d'un sous-ensemble optimal d'électrodes en BCI EEG , 2009 .

[92]  Clemens Brunner,et al.  Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks , 2006, NeuroImage.

[93]  Haiping Lu,et al.  Regularized common spatial patterns with generic learning for EEG signal classification , 2009, 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[94]  G. Pfurtscheller,et al.  Steady-state somatosensory evoked potentials: suitable brain signals for brain-computer interfaces? , 2006, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[95]  Christian Jutten,et al.  Multiclass Brain–Computer Interface Classification by Riemannian Geometry , 2012, IEEE Transactions on Biomedical Engineering.

[96]  Shirley M Coyle,et al.  Brain–computer interface using a simplified functional near-infrared spectroscopy system , 2007, Journal of neural engineering.

[97]  K. M. Wong,et al.  EEG signal classification based on a Riemannian distance measure , 2009, 2009 IEEE Toronto International Conference Science and Technology for Humanity (TIC-STH).

[98]  Haixian Wang,et al.  Local Temporal Common Spatial Patterns for Robust Single-Trial EEG Classification , 2008, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[99]  Gary E. Birch,et al.  A brain-controlled switch for asynchronous control applications , 2000, IEEE Trans. Biomed. Eng..

[100]  Christian Jutten,et al.  Riemannian Geometry Applied to BCI Classification , 2010, LVA/ICA.

[101]  Moritz Grosse-Wentrup,et al.  Multiclass Common Spatial Patterns and Information Theoretic Feature Extraction , 2008, IEEE Transactions on Biomedical Engineering.

[102]  Tian Lan,et al.  Salient EEG Channel Selection in Brain Computer Interfaces by Mutual Information Maximization , 2005, 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference.

[103]  Gert Pfurtscheller,et al.  Motor imagery and direct brain-computer communication , 2001, Proc. IEEE.

[104]  Gert Pfurtscheller,et al.  Characterization of four-class motor imagery EEG data for the BCI-competition 2005 , 2005, Journal of neural engineering.

[105]  T. Sejnowski,et al.  Removing electroencephalographic artifacts by blind source separation. , 2000, Psychophysiology.

[106]  Clemens Brunner,et al.  Nonstationary Brain Source Separation for Multiclass Motor Imagery , 2010, IEEE Transactions on Biomedical Engineering.

[107]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[108]  John Q. Gan,et al.  Motor prediction in Brain-Computer Interfaces for controlling mobile robots , 2008, 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[109]  Klaus-Robert Müller,et al.  Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms , 2004, IEEE Transactions on Biomedical Engineering.

[110]  Cuntai Guan,et al.  Controlling a wheelchair using a BCI with low information transfer rate , 2007, 2007 IEEE 10th International Conference on Rehabilitation Robotics.

[111]  Z J Koles,et al.  The quantitative extraction and topographic mapping of the abnormal components in the clinical EEG. , 1991, Electroencephalography and clinical neurophysiology.

[112]  Frédéric Barbaresco Géométrie différentielle des matrices de covariance et espaces métriques à courbure négative , 2009 .

[113]  Pavel Pudil,et al.  Introduction to Statistical Pattern Recognition , 2006 .

[114]  Yili Li Multichannel EEG Signal Classification -A Geometric Approach , 2010 .

[115]  M. Nuttin,et al.  A brain-actuated wheelchair: Asynchronous and non-invasive Brain–computer interfaces for continuous control of robots , 2008, Clinical Neurophysiology.

[116]  Jonathan R Wolpaw,et al.  Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[117]  M. Kamrunnahar,et al.  Optimization of electrode channels in brain computer interfaces , 2009, 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[118]  Alexandre Barachant,et al.  Spatial filtering optimisation in motor imagery EEG-based BCI , 2008 .

[119]  K.-R. Muller,et al.  Optimizing Spatial filters for Robust EEG Single-Trial Analysis , 2008, IEEE Signal Processing Magazine.

[120]  Mel Slater,et al.  Using a P300 Brain Computer Interface for Smart Home Control , 2009 .

[121]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[122]  M Congedo,et al.  A review of classification algorithms for EEG-based brain–computer interfaces , 2007, Journal of neural engineering.

[123]  H. Karcher Riemannian center of mass and mollifier smoothing , 1977 .

[124]  S. Bonnet,et al.  Channel selection procedure using riemannian distance for BCI applications , 2011, 2011 5th International IEEE/EMBS Conference on Neural Engineering.

[125]  W. A. Sarnacki,et al.  Electroencephalographic (EEG) control of three-dimensional movement , 2010, Journal of neural engineering.

[126]  Christian Jutten,et al.  Suboptimal sensor subset evaluation in a P300 brain-computer interface , 2010, 2010 18th European Signal Processing Conference.

[127]  Yoonju Cho,et al.  Brain-Computer Interface for a Prosthetic Hand Using Local Machine Control and Haptic Feedback , 2007, 2007 IEEE 10th International Conference on Rehabilitation Robotics.