Regularized fuzzy c-means method for brain tissue clustering

This paper presents a regularized fuzzy c-means clustering method for brain tissue segmentation from magnetic resonance images. A regularizer of the total variation type is explored and a method to estimate the regularization parameter is proposed.

[1]  Stan Z. Li,et al.  On Discontinuity-Adaptive Smoothness Priors in Computer Vision , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Sadaaki Miyamoto,et al.  Fuzzy Clustering by Quadratic Regularization , 1998 .

[3]  C. Atkinson METHODS FOR SOLVING INCORRECTLY POSED PROBLEMS , 1985 .

[4]  Jenq-Neng Hwang,et al.  A neural network-based stochastic active contour model (NNS-SNAKE) for contour finding of distinct features , 1995, IEEE Trans. Image Process..

[5]  Demetri Terzopoulos,et al.  Regularization of Inverse Visual Problems Involving Discontinuities , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  D. Louis Collins,et al.  Design and construction of a realistic digital brain phantom , 1998, IEEE Transactions on Medical Imaging.

[7]  Bernard Mazoyer,et al.  Three-dimensional segmentation and interpolation of magnetic resonance brain images , 1993, IEEE Trans. Medical Imaging.

[8]  Jagath C. Rajapakse,et al.  Statistical approach to segmentation of single-channel cerebral MR images , 1997, IEEE Transactions on Medical Imaging.

[9]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[10]  Dipti Prasad Mukherjee,et al.  Fuzzy c-Means Approach to Tissue Classification in Multimodal Medical Imaging , 1999, Inf. Sci..

[11]  M. Brandt,et al.  Estimation of CSF, white and gray matter volumes in hydrocephalic children using fuzzy clustering of MR images. , 1994, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[12]  W E Phillips,et al.  Application of fuzzy c-means segmentation technique for tissue differentiation in MR images of a hemorrhagic glioblastoma multiforme. , 1995, Magnetic Resonance Imaging.

[13]  T. Kunii,et al.  Soft Computing and Human-Centered Machines , 2013, Computer Science Workbench.

[14]  Jerry D. Gibson,et al.  Handbook of Image and Video Processing , 2000 .

[15]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[16]  G. Wahba Practical Approximate Solutions to Linear Operator Equations When the Data are Noisy , 1977 .

[17]  Dzung L. Pham,et al.  Spatial Models for Fuzzy Clustering , 2001, Comput. Vis. Image Underst..

[18]  Sadaaki Miyamoto,et al.  Fuzzy c-means as a regularization and maximum entropy approach , 1997 .

[19]  J. C. Dunn,et al.  A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters , 1973 .

[20]  Zhengrong Liang,et al.  Parameter estimation and tissue segmentation from multispectral MR images , 1994, IEEE Trans. Medical Imaging.

[21]  Per Christian Hansen,et al.  Analysis of Discrete Ill-Posed Problems by Means of the L-Curve , 1992, SIAM Rev..

[22]  W. Clem Karl,et al.  3.6 – Regularization in Image Restoration and Reconstruction , 2005 .

[23]  Reto Meuli,et al.  Robust parameter estimation of intensity distributions for brain magnetic resonance images , 1998, IEEE Transactions on Medical Imaging.

[24]  Demetri Terzopoulos Regularization ofInverseVisualProblemsInvolving Discontinuities , 1986 .

[25]  Rui-Ping Li,et al.  A maximum-entropy approach to fuzzy clustering , 1995, Proceedings of 1995 IEEE International Conference on Fuzzy Systems..

[26]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[27]  Sadaaki Miyamoto,et al.  Methods in Hard and Fuzzy Clustering , 2000 .

[28]  DeLiang Wang,et al.  Segmentation of medical images using LEGION , 1999, IEEE Transactions on Medical Imaging.

[29]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .