Computational techniques for reachability analysis of Max-Plus-Linear systems

This work discusses a computational approach to reachability analysis of Max-Plus-Linear (MPL) systems, a class of discrete-event systems widely used in synchronization and scheduling applications. Given a set of initial states, we characterize and compute its "reach tube," namely the collection of set of reachable states (regarded step-wise as "reach sets"). By an alternative characterization of the MPL dynamics, we show that the exact computation of the reach sets can be performed quickly and compactly by manipulations of difference-bound matrices, and further derive worst-case bounds on the complexity of these operations. The approach is also extended to backward reachability analysis. The concepts and results are elucidated by a running example, and we further illustrate the performance of the approach by a numerical benchmark: the technique comfortably handles twenty-dimensional MPL systems (i.e.?with twenty continuous state variables), and as such it outperforms the state-of-the-art alternative approaches in the literature.

[1]  B. I. Silva,et al.  Modeling and Verifying Hybrid Dynamic Systems Using CheckMate , 2001 .

[2]  T. Lindvall ON A ROUTING PROBLEM , 2004, Probability in the Engineering and Informational Sciences.

[3]  Tadao Murata,et al.  Petri nets: Properties, analysis and applications , 1989, Proc. IEEE.

[4]  Mark Hartmann,et al.  Transience Bounds for Long Walks , 1999, Math. Oper. Res..

[5]  Eugene Asarin,et al.  Scheduling with timed automata , 2006, Theor. Comput. Sci..

[6]  Bart De Schutter,et al.  Forward Reachability Computation for Autonomous Max-Plus-Linear Systems , 2014, TACAS.

[7]  Mato Baotic,et al.  Multi-Parametric Toolbox (MPT) , 2004, HSCC.

[8]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[9]  Thomas A. Henzinger,et al.  Reachability Verification for Hybrid Automata , 1998, HSCC.

[10]  Matthias Függer,et al.  Transience Bounds for Distributed Algorithms , 2013, FORMATS.

[11]  David L. Dill,et al.  Timing Assumptions and Verification of Finite-State Concurrent Systems , 1989, Automatic Verification Methods for Finite State Systems.

[12]  Bart De Schutter,et al.  Abstraction and verification of autonomous Max-Plus-Linear systems , 2012, 2012 American Control Conference (ACC).

[13]  Ricardo D. Katz,et al.  Reachability and Invariance Problems in Max-plus Algebra , 2003, POSTA.

[14]  Eduardo Sontag Nonlinear regulation: The piecewise linear approach , 1981 .

[15]  Bruce H. Krogh,et al.  Computational techniques for hybrid system verification , 2003, IEEE Trans. Autom. Control..

[16]  Johan Bengtsson,et al.  Clocks, DBMS and States in Timed Systems , 2002 .

[17]  Sergio Yovine,et al.  Algorithmic analysis of polygonal hybrid systems, part I: Reachability , 2007, Theor. Comput. Sci..

[18]  Geert Jan Olsder,et al.  Synchronization and Linearity: An Algebra for Discrete Event Systems , 1994 .

[19]  Laurent Truffet,et al.  Idempotent versions of Haar's Lemma: links between comparison of discrete event systems with different state spaces and control , 2007, Kybernetika.

[20]  Stéphane Gaubert,et al.  Reachability Problems for Products of Matrices in Semirings , 2006, Int. J. Algebra Comput..

[21]  Ricardo D. Katz,et al.  The Minkowski theorem for max-plus convex sets , 2006, math/0605078.

[22]  B. Schutter On the ultimate behavior of the sequence of consecutive powers of a matrix in the max-plus algebra , 2000 .

[23]  Bruce H. Krogh,et al.  Reachability Analysis of Large-Scale Affine Systems Using Low-Dimensional Polytopes , 2006, HSCC.

[24]  Edward W. Kamen,et al.  Reachability and observability of linear systems over max-plus , 1999, Kybernetika.

[25]  Ian M. Mitchell Comparing Forward and Backward Reachability as Tools for Safety Analysis , 2007, HSCC.

[26]  Pravin Varaiya,et al.  Ellipsoidal Techniques for Reachability Analysis of Discrete-Time Linear Systems , 2007, IEEE Transactions on Automatic Control.

[27]  Joseph Sifakis,et al.  Automatic Verification Methods for Finite State Systems , 1989, Lecture Notes in Computer Science.

[28]  Bart De Schutter,et al.  Backward Reachability of Autonomous Max-Plus-Linear Systems , 2014, WODES.

[29]  Geert Jan Olsder,et al.  Max Plus at Work: Modeling and Analysis of Synchronized Systems: A Course on Max-Plus Algebra and Its Applications , 2005 .

[30]  Alessandro Abate,et al.  VeriSiMPL: Verification via biSimulations of MPL Models , 2013, QEST.

[31]  Christel Baier,et al.  Principles of Model Checking (Representation and Mind Series) , 2008 .

[32]  Bart De Schutter,et al.  Finite Abstractions of Max-Plus-Linear Systems , 2013, IEEE Transactions on Automatic Control.

[33]  J. Quadrat,et al.  Max-Plus Algebra and System Theory: Where We Are and Where to Go Now , 1999 .

[34]  Bart De Schutter,et al.  Equivalence of hybrid dynamical models , 2001, Autom..

[35]  Christel Baier,et al.  Principles of model checking , 2008 .

[36]  延原 肇 Bernd Heidergott, Olsder Jan Geert, and Jacob van der Woude著, Max Plus at Work-Modeling and Analysis of Synchronized Systems : A Course on Max-Plus Algebra and Its Applications, 出版社:Princeton Univ Press, ISBN:0691117632, 発行日:2005年11月, 第1版, 213p, 6,395円(参考価格) , 2006 .

[37]  Jean-Marie Proth,et al.  Performance evaluation of job-shop systems using timed event-graphs , 1989 .

[38]  Alexandre M. Bayen,et al.  A time-dependent Hamilton-Jacobi formulation of reachable sets for continuous dynamic games , 2005, IEEE Transactions on Automatic Control.

[39]  Bart De Schutter,et al.  Finite abstractions of nonautonomous Max-Plus-Linear systems , 2013, 2013 American Control Conference.

[40]  Kim G. Larsen,et al.  A Tutorial on Uppaal , 2004, SFM.

[41]  H. Nijmeijer,et al.  Event driven manufacturing systems as time domain control systems , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[42]  Eric Goubault,et al.  Inferring Min and Max Invariants Using Max-Plus Polyhedra , 2008, SAS.

[43]  Antoine Girard,et al.  Reachability Analysis of Hybrid Systems Using Support Functions , 2009, CAV.

[44]  Kim G. Larsen,et al.  Reachability analysis for timed automata using max-plus algebra , 2012, J. Log. Algebraic Methods Program..

[45]  Kim G. Larsen,et al.  opaal: A Lattice Model Checker , 2011, NASA Formal Methods.

[46]  Cristian Mahulea,et al.  An Automated Framework for Formal Verification of Timed Continuous Petri Nets , 2010, IEEE Transactions on Industrial Informatics.

[47]  Oded Maler,et al.  Reachability Analysis via Face Lifting , 1998, HSCC.