Spectra of Linearized Operators for NLS Solitary Waves

Nonlinear Schrodinger equations (NLSs) with focusing power nonlinearities have solitary wave solutions. The spectra of the linearized operators around these solitary waves are intimately connected to stability properties of the solitary waves and to the long-time dynamics of solutions of NLSs. We study these spectra in detail, both analytically and numerically.

[1]  W. Schlag,et al.  The nonlinear Schrödinger equation , 2008 .

[2]  M. Lai A note on finite difference discretizations for Poisson equation on a disk , 2001 .

[3]  Laurent Demanet,et al.  Numerical verification of a gap condition for a linearized nonlinear Schrödinger equation , 2006 .

[4]  Dmitry E. Pelinovsky,et al.  Purely nonlinear instability of standing waves with minimal energy , 2003 .

[5]  M. Grillakis,et al.  Linearized instability for nonlinear Schr?odinger and Klein-Gordon equations , 1988 .

[6]  T. Cazenave Semilinear Schrodinger Equations , 2003 .

[7]  James Hardy Wilkinson,et al.  Convergence of the LR, QR, and Related Algorithms , 1965, Comput. J..

[8]  V. E. Grikurov,et al.  Simulation of instability of bright solitons for NLS with saturating nonlinearity , 2001 .

[9]  Yoshimi Saito,et al.  Eigenfunction Expansions Associated with Second-order Differential Equations for Hilbert Space-valued Functions , 1971 .

[10]  Tetsu Mizumachi,et al.  Vortex solitons for 2D focusing nonlinear Schrödinger equation , 2005, Differential and Integral Equations.

[11]  V. Matveev,et al.  Darboux Transformations and Solitons , 1992 .

[12]  Tai-Peng Tsai,et al.  STABLE DIRECTIONS FOR EXCITED STATES OF NONLINEAR SCHRÖDINGER EQUATIONS , 2001, math-ph/0110037.

[13]  Tetsu Mizumachi,et al.  Instability of bound states for 2D nonlinear Schrödinger equations , 2005 .

[14]  B.L.G. Jonsson,et al.  Solitary Wave Dynamics in an External Potential , 2003 .

[15]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[16]  Walter A. Strauss,et al.  Existence of solitary waves in higher dimensions , 1977 .

[17]  M. Weinstein Nonlinear Schrödinger equations and sharp interpolation estimates , 1983 .

[18]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[19]  Dmitry E. Pelinovsky,et al.  Spectra of positive and negative energies in the linearized NLS problem , 2005 .

[20]  Weichung Wang,et al.  Analyzing and visualizing a discretized semilinear elliptic problem with Neumann boundary conditions , 2002 .

[21]  I. Rodnianski,et al.  Dispersive analysis of charge transfer models , 2003, math/0309112.

[22]  J. Shatah,et al.  Stability theory of solitary waves in the presence of symmetry, II☆ , 1990 .

[23]  Ralph Saxton,et al.  Nonlinear PDE’s, Dynamics and Continuum Physics , 2000 .

[24]  W. Rother,et al.  Nonlinear scalar field equations , 1992, Differential and Integral Equations.

[25]  Michael I. Weinstein,et al.  Modulational Stability of Ground States of Nonlinear Schrödinger Equations , 1985 .

[26]  M. Weinstein Lyapunov stability of ground states of nonlinear dispersive evolution equations , 1986 .

[27]  Kenji Nakanishi,et al.  Asymptotic stability and completeness in the energy space for nonlinear Schrödinger equations with small solitary waves , 2003 .

[28]  Walter A. Strauss,et al.  Nonlinear Wave Equations , 1990 .

[29]  Wilhelm Schlag Stable manifolds for an orbitally unstable NLS , 2004 .

[30]  Tetsu Mizumachi Instability of vortex solitons for 2D focusing NLS(Mechanism of temporal and spatial patterns in reaction-diffusion systems) , 2006 .

[31]  Tetsu Mizumachi,et al.  A remark on linearly unstable standing wave solutions to NLS , 2006 .

[32]  G. Weiss,et al.  EIGENFUNCTION EXPANSIONS. Associated with Second-order Differential Equations. Part I. , 1962 .

[33]  M. Kwong Uniqueness of positive solutions of Δu−u+up=0 in Rn , 1989 .

[34]  Henry A. Warchall,et al.  Nonradial Solutions of a Semilinear Elliptic Equation in Two Dimensions , 1993, patt-sol/9309001.

[35]  C. Sulem,et al.  The nonlinear Schrödinger equation : self-focusing and wave collapse , 2004 .

[36]  On the Asymptotic Stability of Bound States in 2D Cubic Schrödinger Equation , 2006, math/0603550.

[37]  L. Demanet,et al.  Numerical verification of a gap condition for linearized NLS , 2005, math/0508235.

[38]  Jianxin Zhou,et al.  Algorithms and Visualization for solutions of nonlinear Elliptic equations , 2000, Int. J. Bifurc. Chaos.

[39]  Tai-Peng Tsai,et al.  Asymptotic dynamics of nonlinear Schrödinger equations: Resonance‐dominated and dispersion‐dominated solutions , 2002 .