Solutions of the Partially Described Inverse Quadratic Eigenvalue Problem

Given $k$ pairs of complex numbers and vectors (closed under conjugation), we consider the inverse quadratic eigenvalue problem of constructing $n\times n$ real symmetric matrices $M$, $C$, and $K$ (with $M$ positive definite) so that the quadratic pencil $Q(\lambda)\equiv \lambda^2M+\lambda C+K$ has the given $k$ pairs as eigenpairs. Using various matrix decompositions, we first construct a general solution to this problem with $k\le n$. Then, with appropriate choices of degrees of freedom in the general solution, we construct several particular solutions with additional eigeninformation or special properties. Numerical results illustrating these solutions are also presented.

[1]  Yuen-Cheng Kuo,et al.  New model correcting method for quadratic eigenvalue problems using symmetric eigenstructure assignment , 2005 .

[2]  Wen-Wei Lin,et al.  Partial pole assignment for the quadratic pencil by output feedback control with feedback designs , 2005, Numer. Linear Algebra Appl..

[3]  Biswa Nath Datta,et al.  Numerically robust pole assignment for second-order systems , 1996 .

[4]  Wen-Wei Lin,et al.  On Inverse Quadratic Eigenvalue Problems with Partially Prescribed Eigenstructure , 2004, SIAM J. Matrix Anal. Appl..

[5]  Y. M. Ram,et al.  Physical modifications to vibratory systems with assigned eigendata , 1999 .

[6]  G. Golub,et al.  Structured inverse eigenvalue problems , 2002, Acta Numerica.

[7]  Daniel J. Inman,et al.  SYMMETRIC INVERSE EIGENVALUE VIBRATION PROBLEM AND ITS APPLICATION , 2001 .

[8]  Karl Meerbergen,et al.  The Quadratic Eigenvalue Problem , 2001, SIAM Rev..

[9]  Sylvan Elhay,et al.  An Inverse Eigenvalue Problem for the Symmetric Tridiagonal Quadratic Pencil with Application to Damped Oscillatory Systems , 1996, SIAM J. Appl. Math..

[10]  Uwe Prells,et al.  Inverse problems for damped vibrating systems , 2005 .

[11]  M. Friswell,et al.  Direct Updating of Damping and Stiffness Matrices , 1998 .

[12]  Moody T. Chu,et al.  Inverse Eigenvalue Problems , 1998, SIAM Rev..

[13]  John E. Mottershead,et al.  Finite Element Model Updating in Structural Dynamics , 1995 .

[14]  P. Lancaster,et al.  Factorization of selfadjoint matrix polynomials with constant signature , 1982 .

[15]  Biswa Nath Datta,et al.  PARTIAL EIGENSTRUCTURE ASSIGNMENT FOR THE QUADRATIC PENCIL , 2000 .

[16]  Jaroslav Kautsky,et al.  Robust Eigenstructure Assignment in Quadratic Matrix Polynomials: Nonsingular Case , 2001, SIAM J. Matrix Anal. Appl..

[17]  Biswa Nath Datta,et al.  Symmetry preserving eigenvalue embedding in finite-element model updating of vibrating structures , 2006 .

[18]  David C. Zimmerman,et al.  Correcting finite element models using a symmetric eigenstructure assignment technique , 1990 .