Interactive preferences in multiobjective ant colony optimisation for assembly line balancing

In this contribution, we propose an interactive multicriteria optimisation framework for the time and space assembly line balancing problem. The framework allows decision maker interaction by means of reference points to obtain the most interesting non-dominated solutions. The principal components of the framework are the $$g$$g-dominance preference scheme and a state-of-the-art memetic multiobjective ant colony optimisation approach. In addition, the framework includes a novel adaptive multi-colony mechanism to be able to handle the preferences in an interactive way. Results show how the multiobjective framework can interactively obtain the most useful solutions with higher convergence than previous a priori methods. The experimentation also makes use of original data of the Nissan Pathfinder engine and practical bounds to define industrially feasible solutions in a set of scenarios. By solving the problem in these scenarios, we show the search guidance advantages of using an interactive multiobjective ant colony optimisation method.

[1]  Oscar Cordón,et al.  Author's Personal Copy Applied Soft Computing a Comparative Study of Multi-objective Ant Colony Optimization Algorithms for the Time and Space Assembly Line Balancing Problem , 2022 .

[2]  Oscar Cordón,et al.  An advanced multiobjective genetic algorithm design for the time and space assembly line balancing problem , 2011, Comput. Ind. Eng..

[3]  Khaled Ghédira,et al.  The r-Dominance: A New Dominance Relation for Interactive Evolutionary Multicriteria Decision Making , 2010, IEEE Transactions on Evolutionary Computation.

[4]  Carlos A. Coello Coello,et al.  g-dominance: Reference point based dominance for multiobjective metaheuristics , 2009, Eur. J. Oper. Res..

[5]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation) , 2006 .

[6]  K. Deb Solving goal programming problems using multi-objective genetic algorithms , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[7]  Andrzej Jaszkiewicz,et al.  Genetic local search for multi-objective combinatorial optimization , 2022 .

[8]  Joaquín Bautista,et al.  A Multiobjective GRASP for the 1/3 Variant of the Time and Space Assembly Line Balancing Problem , 2010, IEA/AIE.

[9]  Ilker Baybars,et al.  A survey of exact algorithms for the simple assembly line balancing , 1986 .

[10]  Kaisa Miettinen,et al.  Using box indices in supporting comparison in multiobjective optimization , 2009, Eur. J. Oper. Res..

[11]  David Greiner,et al.  Introducing Reference Point Using g-Dominance in Optimum Design Considering Uncertainties: An Application in Structural Engineering , 2011, EMO.

[12]  Kalyanmoy Deb,et al.  An Interactive Evolutionary Multiobjective Optimization Method Based on Progressively Approximated Value Functions , 2010, IEEE Transactions on Evolutionary Computation.

[13]  Joaquín Bautista,et al.  Including different kinds of preferences in a multi-objective ant algorithm for time and space assembly line balancing on different Nissan scenarios , 2011, Expert Syst. Appl..

[14]  Joaquín Bautista,et al.  A robustness information and visualization model for time and space assembly line balancing under uncertain demand , 2013 .

[15]  Andrzej P. Wierzbicki,et al.  A parallel multiple reference point approach for multi-objective optimization , 2010, Eur. J. Oper. Res..

[16]  Luca Maria Gambardella,et al.  Ant colony system: a cooperative learning approach to the traveling salesman problem , 1997, IEEE Trans. Evol. Comput..

[17]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[18]  Alice M. Agogino,et al.  Optimized Design of MEMS by Evolutionary Multi-objective Optimization with Interactive Evolutionary Computation , 2004, GECCO.

[19]  Armin Scholl,et al.  Balancing assembly lines effectively - A computational comparison , 1999, Eur. J. Oper. Res..

[20]  Joaquín Bautista,et al.  Ant algorithms for a time and space constrained assembly line balancing problem , 2007, Eur. J. Oper. Res..

[21]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[22]  Murat Köksalan,et al.  An Interactive Evolutionary Metaheuristic for Multiobjective Combinatorial Optimization , 2003, Manag. Sci..

[23]  Nils Boysen,et al.  A classification of assembly line balancing problems , 2007, Eur. J. Oper. Res..

[24]  Rafael Caballero,et al.  Interactive design of personalised tourism routes , 2012 .

[25]  Benjamín Barán,et al.  A Multiobjective Ant Colony System for Vehicle Routing Problem with Time Windows , 2003, Applied Informatics.

[26]  Joaquín Bautista,et al.  Multiobjective memetic algorithms for time and space assembly line balancing , 2012, Eng. Appl. Artif. Intell..

[27]  Arnaud Fréville,et al.  Tabu Search Based Procedure for Solving the 0-1 MultiObjective Knapsack Problem: The Two Objectives Case , 2000, J. Heuristics.

[28]  Alexandre Dolgui,et al.  A taxonomy of line balancing problems and their solutionapproaches , 2013 .

[29]  Joaquín Bautista,et al.  Multiobjective constructive heuristics for the 1/3 variant of the time and space assembly line balancing problem: ACO and random greedy search , 2010, Inf. Sci..

[30]  Peter J. Fleming,et al.  On the Performance Assessment and Comparison of Stochastic Multiobjective Optimizers , 1996, PPSN.

[31]  Armin Scholl,et al.  State-of-the-art exact and heuristic solution procedures for simple assembly line balancing , 2006, Eur. J. Oper. Res..

[32]  Daniel Merkle,et al.  Bi-Criterion Optimization with Multi Colony Ant Algorithms , 2001, EMO.