GPU-based Multi-Volume Rendering of Complex Data in Neuroscience and Neurosurgery

Recent advances in image acquisition technology and its availability in the medical and bio-medical fields have lead to an unprecedented amount of high-resolution imaging data. However, the inherent complexity of this data, caused by its tremendous size, complex structure or multi-modality poses several challenges for current visualization tools. Recent developments in graphics hardware architecture have increased the versatility and processing power of today’s GPUs to the point where GPUs can be considered parallel scientific computing devices. The work in this thesis builds on the current progress in image acquisition techniques and graphics hardware architecture to develop novel 3D visualization methods for the fields of neurosurgery and neuroscience. The first part of this thesis presents an application and framework for planning of neurosurgical interventions. Concurrent GPU-based multi-volume rendering is used to visualize multiple radiological imaging modalities, delineating the patient’s anatomy, neurological function, and metabolic processes. Additionally, novel interaction metaphors are introduced, allowing the surgeon to plan and simulate the surgial approach to the brain based on the individual patient anatomy. The second part of this thesis focuses on GPU-based volume rendering techniques for large and complex EM data, as required in the field of neuroscience. A new mixed-resolution volume ray-casting approach is presented, which circumvents artifacts at block boundaries of different resolutions. NeuroTrace is introduced, an application for interactive segmentation and visualization of neural processes in EM data. EM data is extremely dense, heavily textured and exhibits a complex structure of interconnected nerve cells, making it difficult to achieve high-quality volume renderings. Therefore, this thesis presents a novel on-demand nonlinear noise removal and edge detection method which allows to enhance important structures (e.g., myelinated axons) while de-emphasizing less important regions of the data. In addition to the methods and concepts described above, this thesis tries to bridge the gap between state-of-the-art visualization research and the use of those visualization methods in actual medical and bio-medical applications.

[1]  Markus Hadwiger,et al.  Smooth Mixed-Resolution GPU Volume Rendering , 2008, VG/PBG@SIGGRAPH.

[2]  Jitendra Malik,et al.  Learning to detect natural image boundaries using local brightness, color, and texture cues , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  M. Stella Atkins,et al.  Difficulties of T1 brain MRI segmentation techniques , 2002, SPIE Medical Imaging.

[4]  Werner M. Jainek,et al.  Illustrative Hybrid Visualization and Exploration of Anatomical and Functional Brain Data , 2008, Comput. Graph. Forum.

[5]  W. Denk,et al.  Serial Block-Face Scanning Electron Microscopy to Reconstruct Three-Dimensional Tissue Nanostructure , 2004, PLoS biology.

[6]  C. Rezk-Salama,et al.  Advanced illumination techniques for GPU volume raycasting , 2008, SIGGRAPH ASIA Courses.

[7]  Michael Unser,et al.  Image interpolation and resampling , 2000 .

[8]  Heinz-Otto Peitgen,et al.  Eurographics/ Ieee-vgtc Symposium on Visualization 2008 Interactive Visualization of Multimodal Volume Data for Neurosurgical Tumor Treatment , 2022 .

[9]  Klaus Mueller,et al.  Hardware assisted multichannel volume rendering , 2003, Proceedings Computer Graphics International 2003.

[10]  N. Hata,et al.  Image-guided neurosurgery at Brigham and Women's Hospital , 2006, IEEE Engineering in Medicine and Biology Magazine.

[11]  Carla Maria Dal Sasso Freitas,et al.  Visualizing inner structures in multimodal volume data , 2002, Proceedings. XV Brazilian Symposium on Computer Graphics and Image Processing.

[12]  Bernhard Preim,et al.  Visualization in Medicine: Theory, Algorithms, and Applications , 2007 .

[13]  Charl P. Botha,et al.  New technique for transfer function specification in direct volume rendering using real-time visual feedback , 2002, SPIE Medical Imaging.

[14]  Gabriel Zachmann,et al.  Visual computing for medical diagnosis and treatment , 2009, Comput. Graph..

[15]  Markus Hadwiger,et al.  Perspective Isosurface and Direct Volume Rendering for Virtual Endoscopy Applications , 2006, EuroVis.

[16]  Jerry L Prince,et al.  Current methods in medical image segmentation. , 2000, Annual review of biomedical engineering.

[17]  Rainer Wegenkittl,et al.  Implementation and Complexity of the Watershed‐from‐Markers Algorithm Computed as a Minimal Cost Forest , 2001, Comput. Graph. Forum.

[18]  Lukas Mroz,et al.  STEPS - an application for simulation of transsphenoidal endonasal pituitary surgery , 2004, IEEE Visualization 2004.

[19]  John Keyser,et al.  Visualization of Cellular and Microvascular Relationships , 2008, IEEE Transactions on Visualization and Computer Graphics.

[20]  William R. Mark,et al.  Cg: a system for programming graphics hardware in a C-like language , 2003, ACM Trans. Graph..

[21]  Gabriel Zachmann,et al.  Advanced Algorithms in Medical Computer Graphics , 2008, Eurographics.

[22]  Alexander Borst,et al.  Contour-propagation algorithms for semi-automated reconstruction of neural processes , 2008, Journal of Neuroscience Methods.

[23]  Anders Ynnerman,et al.  Multiresolution Interblock Interpolation in Direct Volume Rendering , 2006, EuroVis.

[24]  J. Suri,et al.  Advanced algorithmic approaches to medical image segmentation: state-of-the-art application in cardiology, neurology, mammography and pathology , 2001 .

[25]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Alireza Entezari,et al.  A Granular Three Dimensional Multiresolution Transform , 2006, EuroVis.

[27]  Martin Kraus,et al.  Adaptive texture maps , 2002, HWWS '02.

[28]  Bernhard Preim,et al.  Sinus Endoscopy - Application of Advanced GPU Volume Rendering for Virtual Endoscopy , 2008, IEEE Transactions on Visualization and Computer Graphics.

[29]  Rüdiger Westermann,et al.  Acceleration techniques for GPU-based volume rendering , 2003, IEEE Visualization, 2003. VIS 2003..

[30]  Thomas Ertl,et al.  Simultaneous visualization of anatomical and functional 3D data by combining volume rendering and flow visualization , 2007, SPIE Medical Imaging.

[31]  Gordon L. Kindlmann,et al.  Semi-Automatic Generation of Transfer Functions for Direct Volume Rendering , 1998, VVS.

[32]  Jitendra Malik,et al.  Using contours to detect and localize junctions in natural images , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[33]  Lance Williams,et al.  Casting curved shadows on curved surfaces , 1978, SIGGRAPH.

[34]  Olaf Sporns,et al.  The Human Connectome: A Structural Description of the Human Brain , 2005, PLoS Comput. Biol..

[35]  Anna Vilanova,et al.  Automating Transfer Function Design for Volume Rendering Using Hierarchical Clustering of Material Boundaries , 2006, EuroVis.

[36]  Ivan Viola,et al.  Hardware-based nonlinear filtering and segmentation using high-level shading languages , 2003, IEEE Visualization, 2003. VIS 2003..

[37]  Heinz-Otto Peitgen,et al.  High-Quality Multimodal Volume Visualization of Intracerebral Pathological Tissue , 2008, VCBM.

[38]  Ting Song,et al.  Comparison study of clinical 3D MRI brain segmentation evaluation , 2004, The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[39]  Andreas Kolb,et al.  Opacity Peeling for Direct Volume Rendering , 2006, Comput. Graph. Forum.

[40]  Jean-Marie Scarabin,et al.  Multimodal and multi-informational neuronavigation , 2000 .

[41]  Penny Rheingans,et al.  Texture-based Transfer Functions for Direct Volume Rendering , 2008, IEEE Transactions on Visualization and Computer Graphics.

[42]  Rüdiger Westermann,et al.  Real-time exploration of regular volume data by adaptive reconstruction of isosurfaces , 1999, The Visual Computer.

[43]  Joe Michael Kniss,et al.  Multidimensional Transfer Functions for Interactive Volume Rendering , 2002, IEEE Trans. Vis. Comput. Graph..

[44]  Karl Heinz Höhne,et al.  High quality rendering of attributed volume data , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[45]  Stefan Bruckner,et al.  Semantic Layers for Illustrative Volume Rendering , 2007, IEEE Transactions on Visualization and Computer Graphics.

[46]  Hans-Peter Seidel,et al.  Virtual Klingler Dissection: Putting Fibers into Context , 2008, Comput. Graph. Forum.

[47]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[48]  Markus Hadwiger,et al.  Segmentierungsfreie Visualisierung des Gehirns für direktes Volume Rendering , 2007, Bildverarbeitung für die Medizin.

[49]  Thomas Ertl,et al.  GPU-based Multi-Volume Rendering for the Visualization of Functional Brain Images , 2006, SimVis.

[50]  Markus Hadwiger,et al.  High-Quality Multimodal Volume Rendering for Preoperative Planning of Neurosurgical Interventions , 2007, IEEE Transactions on Visualization and Computer Graphics.

[51]  Bernd Hamann,et al.  Multiresolution techniques for interactive texture-based volume visualization , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[52]  Anna Puig,et al.  A framework for fusion methods and rendering techniques of multimodal volume data , 2004, Comput. Animat. Virtual Worlds.

[53]  Markus Hadwiger,et al.  Scalable and Interactive Segmentation and Visualization of Neural Processes in EM Datasets , 2009, IEEE Transactions on Visualization and Computer Graphics.

[54]  Roberto Scopigno,et al.  Multiresolution volume visualization with a texture-based octree , 2001, The Visual Computer.

[55]  Thomas Ertl,et al.  Level-of-Detail Volume Rendering via 3D Textures , 2000, 2000 IEEE Symposium on Volume Visualization (VV 2000).

[56]  Markus Hadwiger,et al.  High-quality two-level volume rendering of segmented data sets on consumer graphics hardware , 2003, IEEE Visualization, 2003. VIS 2003..

[57]  Johanna Beyer,et al.  Interactive Diffusion-based Smoothing and Segmentation of Volumetric Datasets on Graphics Hardware , 2007, Methods of Information in Medicine.

[58]  Dirk Bartz,et al.  Interactive and Multi-modal Visualization for Neuroendoscopic Interventions , 2001, VisSym.

[59]  Ross T. Whitaker,et al.  Axon tracking in serial block-face scanning electron microscopy , 2009, Medical Image Anal..

[60]  André Neubauer,et al.  Virtual endoscopy for preoperative planning and training of endonasal transsphenoidal pituitary surgery , 2005 .

[61]  Georgios Sakas,et al.  Data Intermixing and Multi‐volume Rendering , 1999, Comput. Graph. Forum.

[62]  Joachim M. Buhmann,et al.  Empirical evaluation of dissimilarity measures for color and texture , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[63]  D. A. Duce,et al.  Visualization in Scientific Computing , 1994, Focus on Computer Graphics.

[64]  Bernhard Preim,et al.  Combining Silhouettes, Surface, and Volume Rendering for Surgery Education and Planning , 2005, EuroVis.

[65]  Sameer Singh,et al.  A comparison of state-of-the-art diffusion imaging techniques for smoothing medical/non-medical image data , 2002, Object recognition supported by user interaction for service robots.

[66]  N. Hata,et al.  An integrated visualization system for surgical planning and guidance using image fusion and an open MR , 2001, Journal of magnetic resonance imaging : JMRI.

[67]  Christof Rezk-Salama,et al.  High-Level User Interfaces for Transfer Function Design with Semantics , 2006, IEEE Transactions on Visualization and Computer Graphics.

[68]  Marc Levoy,et al.  Display of surfaces from volume data , 1988, IEEE Computer Graphics and Applications.

[69]  Rüdiger Westermann,et al.  Efficiently using graphics hardware in volume rendering applications , 1998, SIGGRAPH.

[70]  Anders Ynnerman,et al.  Transfer function based adaptive decompression for volume rendering of large medical data sets , 2004, 2004 IEEE Symposium on Volume Visualization and Graphics.

[71]  Thomas Ertl,et al.  Interactive Clipping Techniques for Texture-Based Volume Visualization and Volume Shading , 2003, IEEE Trans. Vis. Comput. Graph..

[72]  Amelio Vázquez Reina,et al.  Multiphase geometric couplings for the segmentation of neural processes , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[73]  Markus Hadwiger,et al.  Real‐Time Ray‐Casting and Advanced Shading of Discrete Isosurfaces , 2005, Comput. Graph. Forum.

[74]  Kwan-Liu Ma,et al.  A novel interface for higher-dimensional classification of volume data , 2003, IEEE Visualization, 2003. VIS 2003..

[75]  Daniela Tost Pardell,et al.  Rendering techniques for multimodal data , 2002 .

[76]  Peter Hastreiter,et al.  Smooth volume rendering of labeled medical data on consumer graphics hardware , 2005, SPIE Medical Imaging.

[77]  Jim X. Chen,et al.  OpenGL Shading Language , 2009 .

[78]  Luis Serra,et al.  Volume-based tumor neurosurgery planning in the Virtual Workbench , 1998, Proceedings. IEEE 1998 Virtual Reality Annual International Symposium (Cat. No.98CB36180).

[79]  V.R.S Mani,et al.  Survey of Medical Image Registration , 2013 .

[80]  Lisa M. Brown,et al.  A survey of image registration techniques , 1992, CSUR.

[81]  Wolfgang Straßer,et al.  Advanced techniques for high-quality multi-resolution volume rendering , 2004, Comput. Graph..

[82]  R. Nick Bryan,et al.  Confocal volume rendering: fast, segmentation-free visualization of internal structures , 2000, Medical Imaging.

[83]  Patric Ljung,et al.  Methods for Direct Volume Rendering of Large Data Sets , 2006 .

[84]  Kevin L. Briggman,et al.  Towards neural circuit reconstruction with volume electron microscopy techniques , 2006, Current Opinion in Neurobiology.

[85]  Simon K. Warfield,et al.  Alignment of Large Image Series Using Cubic B-Splines Tessellation: Application to Transmission Electron Microscopy Data , 2007, MICCAI.