Impact of Classifiers to Drift Detection Method: A Comparison

[1]  Antonio F. Gómez-Skarmeta,et al.  An Artificial Intelligence-Based Collaboration Approach in Industrial IoT Manufacturing: Key Concepts, Architectural Extensions and Potential Applications , 2020, Sensors.

[2]  Stamatis Voliotis,et al.  Tackling Faults in the Industry 4.0 Era—A Survey of Machine-Learning Solutions and Key Aspects , 2019, Sensors.

[3]  Guangquan Zhang,et al.  Learning under Concept Drift: A Review , 2019, IEEE Transactions on Knowledge and Data Engineering.

[4]  Roberto Souto Maior de Barros,et al.  An overview and comprehensive comparison of ensembles for concept drift , 2019, Inf. Fusion.

[5]  Scott Wares,et al.  Data stream mining: methods and challenges for handling concept drift , 2019, SN Applied Sciences.

[6]  Talel Abdessalem,et al.  Scikit-Multiflow: A Multi-output Streaming Framework , 2018, J. Mach. Learn. Res..

[7]  Roberto Souto Maior de Barros,et al.  A large-scale comparison of concept drift detectors , 2018, Inf. Sci..

[8]  Jing Liao,et al.  Effects of different base classifiers to Learn++ family algorithms for concept drifting and imbalanced pattern classification problems , 2016, 2016 International Conference on Machine Learning and Cybernetics (ICMLC).

[9]  Roberto Souto Maior de Barros,et al.  A comparative study on concept drift detectors , 2014, Expert Syst. Appl..

[10]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[11]  João Gama,et al.  Learning with Drift Detection , 2004, SBIA.

[12]  William Nick Street,et al.  A streaming ensemble algorithm (SEA) for large-scale classification , 2001, KDD '01.

[13]  A. P. Dawid,et al.  Present position and potential developments: some personal views , 1984 .

[14]  João Paulo Papa,et al.  An Overview on Concept Drift Learning , 2019, IEEE Access.