Some physical models with Minkowski spacetime structure and Lorentz group symmetry
暂无分享,去创建一个
[1] Hong-Ki Hong,et al. Lorentz group on Minkowski spacetime for construction of the two basic principles of plasticity , 2001 .
[2] Chein-Shan Liu,et al. Lorentz group SOo(5, 1) for perfect elastoplasticity with large deformation and a consistency numerical scheme , 1999 .
[3] Chein-Shan Liu,et al. On behavior of perfect elastoplasticity under rectilinear paths , 1998 .
[4] J. Hale,et al. Ordinary Differential Equations , 2019, Fundamentals of Numerical Mathematics for Physicists and Engineers.
[5] M. J. Sewell,et al. Maximum and minimum principles , 1989, The Mathematical Gazette.
[6] G. Naber. The geometry of Minkowski spacetime , 1992 .
[7] On classical solutions of the Prandtl-Reuss equations of perfect elastoplasticity , 1996 .
[8] N. A. Doughty. Lagrangian Interaction: An Introduction To Relativistic Symmetry In Electrodynamics And Gravitation , 1990 .
[9] E. C. Zeeman,et al. Causality Implies the Lorentz Group , 1964 .
[10] A. Reuss,et al. Berücksichtigung der elastischen Formänderung in der Plastizitätstheorie , 1930 .
[11] J. F. Cornwell. Group theory in physics , 1984 .
[12] Hong-Ki Hong,et al. Internal symmetry in bilinear elastoplasticity , 1999 .
[13] Prandtl-Reuss elastoplasticity: On-off switch and superposition formulae , 1997 .
[14] Peter G. Bergmann,et al. Principles of Relativity Physics , 1967 .
[15] J. Jackson,et al. Classical Electrodynamics, 2nd Edition , 1975 .
[16] D. A. Dunnett. Classical Electrodynamics , 2020, Nature.
[17] R. Hill. A general theory of uniqueness and stability in elastic-plastic solids , 1958 .
[18] Hong-Ki Hong,et al. Internal symmetry in the constitutive model of perfect elastoplasticity , 2000 .