A Posteriori Error Estimation for the Discrete Duality Finite Volume Discretization of the Laplace Equation

An efficient and fully computable a posteriori error bound is derived for the discrete duality finite volume discretization of the Laplace equation on very general two-dimensional meshes. The main ingredients are the equivalence of this method with a finite element like scheme and tools from the finite element framework. Numerical tests are performed with a stiff solution on highly nonconforming locally refined meshes and with a singular solution on triangular meshes.

[1]  Maxim A. Olshanskii,et al.  On the domain geometry dependence of the LBB condition , 2000 .

[2]  F. Boyer,et al.  Discrete duality finite volume schemes for Leray−Lions−type elliptic problems on general 2D meshes , 2007 .

[3]  Mario Ohlberger Higher order finite volume methods on selfadaptive grids for convection dominated reactive transport problems in porous media , 2004 .

[4]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[5]  R. Durán,et al.  A posteriori error estimators for nonconforming finite element methods , 1996 .

[6]  R. Verfürth A posteriori error estimators for the Stokes equations , 1989 .

[7]  S. Nicaise A posteriori residual error estimation of a cell-centered finite volume method , 2004 .

[8]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[9]  Stanimire Tomov,et al.  A Posteriori Error Estimates for Finite Volume Element Approximations of Convection–Diffusion–Reaction Equations , 2002 .

[10]  Claire Chainais-Hillairet,et al.  Discrete duality finite volume schemes for two‐dimensional drift‐diffusion and energy‐transport models , 2009 .

[11]  Pascal Omnes,et al.  A FINITE VOLUME METHOD FOR THE LAPLACE EQUATION ON ALMOST ARBITRARY TWO-DIMENSIONAL GRIDS , 2005 .

[12]  Pascal Omnes,et al.  A finite volume method for the approximation of Maxwell's equations in two space dimensions on arbitrary meshes , 2008, J. Comput. Phys..

[13]  Martin Vohralík,et al.  A Posteriori Error Estimates for Lowest-Order Mixed Finite Element Discretizations of Convection-Diffusion-Reaction Equations , 2007, SIAM J. Numer. Anal..

[14]  F. Hermeline,et al.  A Finite Volume Method for the Approximation of Diffusion Operators on Distorted Meshes , 2000 .

[15]  Stella Krell Stabilized DDFV schemes for stokes problem with variable viscosity on general 2D meshes , 2011 .

[16]  Mario Ohlberger A posteriori error estimates for vertex centered finite volume approximations of convection-diffusion-reaction equations , 2001 .

[17]  H. Weinberger,et al.  An optimal Poincaré inequality for convex domains , 1960 .

[18]  Stanimire Tomov,et al.  Explicit and Averaging A Posteriori Error Estimates for Adaptive Finite Volume Methods , 2004, SIAM J. Numer. Anal..

[19]  Abdellatif Agouzal,et al.  A posteriori error estimator for finite volume methods , 2000, Appl. Math. Comput..

[20]  Rüdiger Verfürth,et al.  A posteriori error estimators for the Stokes equations II non-conforming discretizations , 1991 .

[21]  Y. Coudière,et al.  A 2D/3D Discrete Duality Finite Volume Scheme. Application to ECG simulation , 2009 .

[22]  F. Hecht,et al.  A POSTERIORI ANALYSIS OF A PENALTY METHOD AND APPLICATION TO THE STOKES PROBLEM , 2003 .

[23]  R. Eymard,et al.  Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.

[24]  Sarah Delcourte DEVELOPPEMENT DE METHODES DE VOLUMES FINIS POUR LA MECANIQUE DES FLUIDES , 2007 .

[25]  Mark Ainsworth,et al.  Robust A Posteriori Error Estimation for Nonconforming Finite Element Approximation , 2004, SIAM J. Numer. Anal..

[26]  Franck Boyer,et al.  Finite Volume Method for 2D Linear and Nonlinear Elliptic Problems with Discontinuities , 2008, SIAM J. Numer. Anal..

[27]  R. Herbin,et al.  An Error Estimate for a Nite Volume Scheme for a Diiusion Convection Problem on a Triangular Mesh , 1995 .

[28]  Serge Nicaise,et al.  A Posteriori Error Estimations of Some Cell Centered Finite Volume Methods for Diffusion-Convection-Reaction Problems , 2006, SIAM J. Numer. Anal..

[29]  Yves Coudière,et al.  CONVERGENCE RATE OF A FINITE VOLUME SCHEME FOR A TWO DIMENSIONAL CONVECTION-DIFFUSION PROBLEM , 1999 .

[30]  F. Hermeline,et al.  Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes , 2003 .

[31]  R. Durán,et al.  Error estimators for nonconforming finite element approximations of the Stokes problem , 1995 .

[33]  Carsten Carstensen,et al.  Fully Reliable Localized Error Control in the FEM , 1999, SIAM J. Sci. Comput..

[34]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[35]  I. Babuska,et al.  The finite element method and its reliability , 2001 .

[36]  Gianmarco Manzini,et al.  The Discrete Duality Finite Volume Method for Convection-diffusion Problems , 2010, SIAM J. Numer. Anal..

[37]  Rüdiger Verfürth,et al.  Estimations a posteriori d’un schéma de volumes finis pour un problème non linéaire , 2003, Numerische Mathematik.

[38]  C. Carstensen,et al.  Constants in Clément-interpolation error and residual based a posteriori estimates in finite element methods , 2000 .

[39]  R. Glowinski,et al.  A multi-domain method for solving numerically multi-scale elliptic problems , 2004 .

[40]  Yves Coudière,et al.  A 3D Discrete Duality Finite Volume Method for Nonlinear Elliptic Equations , 2009, SIAM J. Sci. Comput..

[41]  Serge Nicaise,et al.  A posteriori error estimations of some cell-centered finite volume methods , 2005, SIAM J. Numer. Anal..

[42]  R. Verfürth,et al.  Error estimates for some quasi-interpolation operators , 1999 .

[43]  Manfred Dobrowolski,et al.  On the LBB condition in the numerical analysis of the Stokes equations , 2005 .

[44]  Kenneth H. Karlsen,et al.  Convergence of discrete duality finite volume schemes for the cardiac bidomain model , 2010, Networks Heterog. Media.

[45]  E. Christiansen,et al.  Handbook of Numerical Analysis , 1996 .

[46]  Rüdiger Verführt,et al.  A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.

[47]  Martin Vohralík,et al.  Residual flux-based a posteriori error estimates for finite volume and related locally conservative methods , 2008, Numerische Mathematik.

[48]  Pascal Omnes,et al.  A Discrete Duality Finite Volume Approach to Hodge Decomposition and div-curl Problems on Almost Arbitrary Two-Dimensional Meshes , 2007, SIAM J. Numer. Anal..

[49]  Martin Vohralík A posteriori error estimation in the conforming finite element method based on its local conservativity and using local minimization , 2008 .

[50]  Michael Plexousakis,et al.  On the Construction and Analysis of High Order Locally Conservative Finite Volume-Type Methods for One-Dimensional Elliptic Problems , 2004, SIAM J. Numer. Anal..