A Posteriori Error Estimation for the Discrete Duality Finite Volume Discretization of the Laplace Equation
暂无分享,去创建一个
[1] Maxim A. Olshanskii,et al. On the domain geometry dependence of the LBB condition , 2000 .
[2] F. Boyer,et al. Discrete duality finite volume schemes for Leray−Lions−type elliptic problems on general 2D meshes , 2007 .
[3] Mario Ohlberger. Higher order finite volume methods on selfadaptive grids for convection dominated reactive transport problems in porous media , 2004 .
[4] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[5] R. Durán,et al. A posteriori error estimators for nonconforming finite element methods , 1996 .
[6] R. Verfürth. A posteriori error estimators for the Stokes equations , 1989 .
[7] S. Nicaise. A posteriori residual error estimation of a cell-centered finite volume method , 2004 .
[8] Jonathan Richard Shewchuk,et al. Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.
[9] Stanimire Tomov,et al. A Posteriori Error Estimates for Finite Volume Element Approximations of Convection–Diffusion–Reaction Equations , 2002 .
[10] Claire Chainais-Hillairet,et al. Discrete duality finite volume schemes for two‐dimensional drift‐diffusion and energy‐transport models , 2009 .
[11] Pascal Omnes,et al. A FINITE VOLUME METHOD FOR THE LAPLACE EQUATION ON ALMOST ARBITRARY TWO-DIMENSIONAL GRIDS , 2005 .
[12] Pascal Omnes,et al. A finite volume method for the approximation of Maxwell's equations in two space dimensions on arbitrary meshes , 2008, J. Comput. Phys..
[13] Martin Vohralík,et al. A Posteriori Error Estimates for Lowest-Order Mixed Finite Element Discretizations of Convection-Diffusion-Reaction Equations , 2007, SIAM J. Numer. Anal..
[14] F. Hermeline,et al. A Finite Volume Method for the Approximation of Diffusion Operators on Distorted Meshes , 2000 .
[15] Stella Krell. Stabilized DDFV schemes for stokes problem with variable viscosity on general 2D meshes , 2011 .
[16] Mario Ohlberger. A posteriori error estimates for vertex centered finite volume approximations of convection-diffusion-reaction equations , 2001 .
[17] H. Weinberger,et al. An optimal Poincaré inequality for convex domains , 1960 .
[18] Stanimire Tomov,et al. Explicit and Averaging A Posteriori Error Estimates for Adaptive Finite Volume Methods , 2004, SIAM J. Numer. Anal..
[19] Abdellatif Agouzal,et al. A posteriori error estimator for finite volume methods , 2000, Appl. Math. Comput..
[20] Rüdiger Verfürth,et al. A posteriori error estimators for the Stokes equations II non-conforming discretizations , 1991 .
[21] Y. Coudière,et al. A 2D/3D Discrete Duality Finite Volume Scheme. Application to ECG simulation , 2009 .
[22] F. Hecht,et al. A POSTERIORI ANALYSIS OF A PENALTY METHOD AND APPLICATION TO THE STOKES PROBLEM , 2003 .
[23] R. Eymard,et al. Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.
[24] Sarah Delcourte. DEVELOPPEMENT DE METHODES DE VOLUMES FINIS POUR LA MECANIQUE DES FLUIDES , 2007 .
[25] Mark Ainsworth,et al. Robust A Posteriori Error Estimation for Nonconforming Finite Element Approximation , 2004, SIAM J. Numer. Anal..
[26] Franck Boyer,et al. Finite Volume Method for 2D Linear and Nonlinear Elliptic Problems with Discontinuities , 2008, SIAM J. Numer. Anal..
[27] R. Herbin,et al. An Error Estimate for a Nite Volume Scheme for a Diiusion Convection Problem on a Triangular Mesh , 1995 .
[28] Serge Nicaise,et al. A Posteriori Error Estimations of Some Cell Centered Finite Volume Methods for Diffusion-Convection-Reaction Problems , 2006, SIAM J. Numer. Anal..
[29] Yves Coudière,et al. CONVERGENCE RATE OF A FINITE VOLUME SCHEME FOR A TWO DIMENSIONAL CONVECTION-DIFFUSION PROBLEM , 1999 .
[30] F. Hermeline,et al. Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes , 2003 .
[31] R. Durán,et al. Error estimators for nonconforming finite element approximations of the Stokes problem , 1995 .
[33] Carsten Carstensen,et al. Fully Reliable Localized Error Control in the FEM , 1999, SIAM J. Sci. Comput..
[34] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[35] I. Babuska,et al. The finite element method and its reliability , 2001 .
[36] Gianmarco Manzini,et al. The Discrete Duality Finite Volume Method for Convection-diffusion Problems , 2010, SIAM J. Numer. Anal..
[37] Rüdiger Verfürth,et al. Estimations a posteriori d’un schéma de volumes finis pour un problème non linéaire , 2003, Numerische Mathematik.
[38] C. Carstensen,et al. Constants in Clément-interpolation error and residual based a posteriori estimates in finite element methods , 2000 .
[39] R. Glowinski,et al. A multi-domain method for solving numerically multi-scale elliptic problems , 2004 .
[40] Yves Coudière,et al. A 3D Discrete Duality Finite Volume Method for Nonlinear Elliptic Equations , 2009, SIAM J. Sci. Comput..
[41] Serge Nicaise,et al. A posteriori error estimations of some cell-centered finite volume methods , 2005, SIAM J. Numer. Anal..
[42] R. Verfürth,et al. Error estimates for some quasi-interpolation operators , 1999 .
[43] Manfred Dobrowolski,et al. On the LBB condition in the numerical analysis of the Stokes equations , 2005 .
[44] Kenneth H. Karlsen,et al. Convergence of discrete duality finite volume schemes for the cardiac bidomain model , 2010, Networks Heterog. Media.
[45] E. Christiansen,et al. Handbook of Numerical Analysis , 1996 .
[46] Rüdiger Verführt,et al. A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.
[47] Martin Vohralík,et al. Residual flux-based a posteriori error estimates for finite volume and related locally conservative methods , 2008, Numerische Mathematik.
[48] Pascal Omnes,et al. A Discrete Duality Finite Volume Approach to Hodge Decomposition and div-curl Problems on Almost Arbitrary Two-Dimensional Meshes , 2007, SIAM J. Numer. Anal..
[49] Martin Vohralík. A posteriori error estimation in the conforming finite element method based on its local conservativity and using local minimization , 2008 .
[50] Michael Plexousakis,et al. On the Construction and Analysis of High Order Locally Conservative Finite Volume-Type Methods for One-Dimensional Elliptic Problems , 2004, SIAM J. Numer. Anal..