Cytotoxic cycloartane triterpenoid saponins from Actaea vaginata and their mechanism of action.

[1]  Xu-dong Xu,et al.  Two new cycloartane triterpenoid glycosides from the rhizomes of Actaea vaginata , 2022, Natural product research.

[2]  Na Li,et al.  Scutebarbatine A induces cytotoxicity in hepatocellular carcinoma via activation of the MAPK and ER stress signaling pathways , 2021, Journal of biochemical and molecular toxicology.

[3]  Kegang Linghu,et al.  Small molecule‐driven SIRT3‐autophagy‐mediated NLRP3 inflammasome inhibition ameliorates inflammatory crosstalk between macrophages and adipocytes , 2020, British journal of pharmacology.

[4]  Xu-dong Xu,et al.  Soulieoside U, a new cycloartane triterpene glycoside from Actaea vaginata , 2020, Natural product research.

[5]  B. Perillo,et al.  ROS in cancer therapy: the bright side of the moon , 2020, Experimental & Molecular Medicine.

[6]  J. Chen,et al.  Rhein induces liver cancer cells apoptosis via activating ROS-dependent JNK/Jun/caspase-3 signaling pathway , 2020, Journal of Cancer.

[7]  Yang Bu,et al.  Traditional Chinese medicine as supportive care for the management of liver cancer: Past, present, and future , 2019, Genes & diseases.

[8]  Minli Zhang,et al.  A new cycloartane triterpene bisdesmoside from the rhizomes of Actaea vaginata , 2019, Natural product research.

[9]  Yuqing Sun,et al.  Effect of euphorbia factor L1 on oxidative stress, apoptosis, and autophagy in human gastric epithelial cells. , 2019, Phytomedicine : international journal of phytotherapy and phytopharmacology.

[10]  Wei Liu,et al.  Apigenin, a flavonoid constituent derived from P. villosa, inhibits hepatocellular carcinoma cell growth by CyclinD1/CDK4 regulation via p38 MAPK-p21 signaling. , 2019, Pathology, research and practice.

[11]  Guo-Dong Yao,et al.  A new coumarin from Juglans mandshurica Maxim induce apoptosis in hepatocarcinoma cells , 2019, Natural product research.

[12]  Yongye Huang,et al.  Traditional Chinese medicine as a cancer treatment: Modern perspectives of ancient but advanced science , 2019, Cancer medicine.

[13]  L. Gan,et al.  Cycloartane triterpenoids from Actaea vaginata with anti-inflammatory effects in LPS-stimulated RAW264.7 macrophages. , 2019, Phytochemistry.

[14]  Changmin Kim,et al.  Anti-Cancer Natural Products and Their Bioactive Compounds Inducing ER Stress-Mediated Apoptosis: A Review , 2018, Nutrients.

[15]  Guo-Dong Yao,et al.  Enantiomeric neolignans from Picrasma quassioides exhibit distinctive cytotoxicity on hepatic carcinoma cells through ROS generation and apoptosis induction. , 2018, Bioorganic & medicinal chemistry letters.

[16]  Xu-dong Xu,et al.  A Novel Cycloartane Triterpenoid Bisdesmoside from Actaea vaginata , 2017 .

[17]  Xu-dong Xu,et al.  A New Cytotoxic Cyclolanostane Triterpenoid Xyloside from Souliea vaginata , 2017, Natural product communications.

[18]  Guo-Dong Yao,et al.  Phenylpropanoids from Juglans mandshurica exhibit cytotoxicities on liver cancer cell lines through apoptosis induction. , 2017, Bioorganic & medicinal chemistry letters.

[19]  Jing Zhou,et al.  Five new cycloartane triterpenoids from Beesia calthifolia. , 2015, Fitoterapia.

[20]  X. Dong,et al.  New cycloartane triterpene glycosides from Beesia calthaefolia , 2013, Natural product research.

[21]  P. Xiao,et al.  Anti-cancer activity and mechanisms of 25-anhydrocimigenol-3-O-&bgr;-D-xylopyranoside isolated from Souliea vaginata on hepatomas , 2006, Anti-cancer drugs.

[22]  Jun-shan Yang,et al.  [Structures and pharmacological activities of beesiosides O and P]. , 2002, Yao xue xue bao = Acta pharmaceutica Sinica.

[23]  Dong Liu,et al.  Beesiosides G, H, and J-N, seven new cycloartane triterpene glycosides from Beesia calthifolia. , 2002, Journal of natural products.

[24]  Takao Inoue,et al.  Studies on the constituents of Beesia calthaefolia and Souliea vaginata. II: Beesioside II, a cyclolanostanol xyloside from rhizomes of Beesia calthaefolia , 1986 .