A novel multi-objective optimization algorithm based on artificial algae for multi-objective engineering design problems

There are many diverse fields and applications such as data mining, engineering, operations research, economics, and science can be formulated as multi-objective optimization problems. In this paper, we describe and propose a novel and a useful multi-objective artificial algae algorithm (MO-AAA) to solve multi-objective engineering design problems. Our proposed algorithm, (MO-AAA), is based on the search technique of artificial algae algorithm(AAA) algorithm. MO-ADA applies the elitist non-dominated sorting and crowding distance approach to preserve the diversity among the optimal set of solutions and obtains various non-domination levels, respectively. Also, we evaluate the effectiveness of the proposed algorithm by applying it on different multi-objective benchmark problems (20 challenging benchmark problems from CEC 2009 for unconstrained and constrained multi-objective optimization problems) and engineering design benchmark problems with distinctive features. Finally, our results show that MO-AAA efficiently generates the Pareto front and is easy to implement, promising and competitive compared to other state-of-the-art algorithms considered in this work.

[1]  Vivek K. Patel,et al.  Heat transfer search (HTS): a novel optimization algorithm , 2015, Inf. Sci..

[2]  Matthias Ehrgott,et al.  Multiple criteria decision analysis: state of the art surveys , 2005 .

[3]  Fariborz Jolai,et al.  Lion Optimization Algorithm (LOA): A nature-inspired metaheuristic algorithm , 2016, J. Comput. Des. Eng..

[4]  Minghao Yin,et al.  Animal migration optimization: an optimization algorithm inspired by animal migration behavior , 2014, Neural Computing and Applications.

[5]  David Corne,et al.  The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[6]  Carlos A. Coello Coello,et al.  Applications of multi-objective evolutionary algorithms in economics and finance: A survey , 2007, 2007 IEEE Congress on Evolutionary Computation.

[7]  Carlos A. Coello Coello,et al.  Handling preferences in evolutionary multiobjective optimization: a survey , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[8]  Maoguo Gong,et al.  Multiobjective Immune Algorithm with Nondominated Neighbor-Based Selection , 2008, Evolutionary Computation.

[9]  Kalyanmoy Deb,et al.  Improving differential evolution through a unified approach , 2013, J. Glob. Optim..

[10]  Dervis Karaboga,et al.  A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm , 2007, J. Glob. Optim..

[11]  Manoj Kumar Tiwari,et al.  Interactive Particle Swarm: A Pareto-Adaptive Metaheuristic to Multiobjective Optimization , 2008, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[12]  Mehmet Mutlu Yenisey,et al.  Ant colony optimization for multi-objective flow shop scheduling problem , 2008, Comput. Ind. Eng..

[13]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[14]  Kevin M. Passino,et al.  Biomimicry of bacterial foraging for distributed optimization and control , 2002 .

[15]  Ali Kaveh Charged System Search Algorithm , 2014 .

[16]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[17]  Matthias Ehrgott,et al.  Multicriteria Optimization (2. ed.) , 2005 .

[18]  Simon French,et al.  Multi-Objective Decision Analysis with Engineering and Business Applications , 1983 .

[19]  Ali Kaveh,et al.  Advances in Metaheuristic Algorithms for Optimal Design of Structures , 2014 .

[20]  C.A. Coello Coello,et al.  MOPSO: a proposal for multiple objective particle swarm optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[21]  Qingfu Zhang,et al.  Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II , 2009, IEEE Transactions on Evolutionary Computation.

[22]  C. Lucas,et al.  A novel numerical optimization algorithm inspired from weed colonization , 2006, Ecol. Informatics.

[23]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.

[24]  Xin-She Yang,et al.  A New Metaheuristic Bat-Inspired Algorithm , 2010, NICSO.

[25]  Francisco Luna,et al.  Evolutionary algorithms for solving the automatic cell planning problem: a survey , 2010 .

[26]  Gary G. Yen,et al.  Cultural MOPSO: A cultural framework to adapt parameters of multiobjective particle swarm optimization , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[27]  Qingfu Zhang,et al.  Multiobjective Memetic Algorithms , 2012, Handbook of Memetic Algorithms.

[28]  Jasbir S. Arora,et al.  Survey of multi-objective optimization methods for engineering , 2004 .

[29]  Marco Dorigo,et al.  Optimization, Learning and Natural Algorithms , 1992 .

[30]  Gülay Tezel,et al.  Artificial algae algorithm (AAA) for nonlinear global optimization , 2015, Appl. Soft Comput..

[31]  X. Gandibleux,et al.  Approximative solution methods for multiobjective combinatorial optimization , 2004 .

[32]  Ali Ahrari,et al.  Grenade Explosion Method - A novel tool for optimization of multimodal functions , 2010, Appl. Soft Comput..

[33]  Matthias Ehrgott,et al.  Constructing robust crew schedules with bicriteria optimization , 2002 .

[34]  Michel Gendreau,et al.  An exact epsilon-constraint method for bi-objective combinatorial optimization problems: Application to the Traveling Salesman Problem with Profits , 2009, Eur. J. Oper. Res..

[35]  Witold Pedrycz,et al.  Data Mining Methods for Knowledge Discovery , 1998, IEEE Trans. Neural Networks.

[36]  Ali Sadollah,et al.  Water cycle algorithm for solving constrained multi-objective optimization problems , 2015, Appl. Soft Comput..

[37]  R. Venkata Rao,et al.  Teaching-Learning-Based Optimization: An optimization method for continuous non-linear large scale problems , 2012, Inf. Sci..

[38]  Marco Laumanns,et al.  An efficient, adaptive parameter variation scheme for metaheuristics based on the epsilon-constraint method , 2006, Eur. J. Oper. Res..

[39]  Hossein Nezamabadi-pour,et al.  GSA: A Gravitational Search Algorithm , 2009, Inf. Sci..

[40]  Xin-She Yang,et al.  Multiobjective firefly algorithm for continuous optimization , 2012, Engineering with Computers.

[41]  Ashkan Rahimi-Kian,et al.  Multiobjective invasive weed optimization: Application to analysis of Pareto improvement models in electricity markets , 2012, Appl. Soft Comput..

[42]  Charles E. Taylor Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. Complex Adaptive Systems.John H. Holland , 1994 .

[43]  S. S. Thakur,et al.  Biogeography based optimization for multi-constraint optimal power flow with emission and non-smooth cost function , 2010, Expert Syst. Appl..

[44]  Ujjwal Maulik,et al.  A Simulated Annealing-Based Multiobjective Optimization Algorithm: AMOSA , 2008, IEEE Transactions on Evolutionary Computation.

[45]  Kalyanmoy Deb,et al.  Enhancing performance of particle swarm optimization through an algorithmic link with genetic algorithms , 2013, Comput. Optim. Appl..

[46]  Ardeshir Bahreininejad,et al.  Water cycle algorithm - A novel metaheuristic optimization method for solving constrained engineering optimization problems , 2012 .

[47]  Vivek K. Patel,et al.  A multi-objective improved teaching-learning based optimization algorithm (MO-ITLBO) , 2016, Inf. Sci..

[48]  Alan S. Perelson,et al.  The immune system, adaptation, and machine learning , 1986 .

[49]  George Mavrotas,et al.  Effective implementation of the epsilon-constraint method in Multi-Objective Mathematical Programming problems , 2009, Appl. Math. Comput..

[50]  J. D. Schaffer,et al.  Some experiments in machine learning using vector evaluated genetic algorithms (artificial intelligence, optimization, adaptation, pattern recognition) , 1984 .

[51]  K. S. Swarup,et al.  Multi-objective biogeography based optimization for optimal PMU placement , 2012, Appl. Soft Comput..

[52]  Agostinho C. Rosa,et al.  Multiobjective Memetic Algorithms applied to University Timetabling Problems , 2017 .

[53]  Vimal Savsani,et al.  Passing vehicle search (PVS): A novel metaheuristic algorithm , 2016 .

[54]  Daniel Angus,et al.  Multiple objective ant colony optimisation , 2009, Swarm Intelligence.

[55]  Ganapati Panda,et al.  Solving multiobjective problems using cat swarm optimization , 2012, Expert Syst. Appl..

[56]  Hussain Shareef,et al.  Lightning search algorithm , 2015, Appl. Soft Comput..

[57]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[58]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[59]  M Reyes Sierra,et al.  Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art , 2006 .

[60]  Aniruddha Bhattacharya,et al.  Multi-objective economic emission load dispatch solution using gravitational search algorithm and considering wind power penetration , 2013 .

[61]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[62]  Thomas Hanne,et al.  On the Development and Future Aspects of Vector Optimization and MCDM , 1997 .

[63]  Kathrin Klamroth,et al.  An MCDM approach to portfolio optimization , 2004, Eur. J. Oper. Res..

[64]  Johan Andersson,et al.  A survey of multiobjective optimization in engineering design , 2001 .

[65]  Hossein Nezamabadi-pour,et al.  BGSA: binary gravitational search algorithm , 2010, Natural Computing.

[66]  Mehmet Karaköse,et al.  A multi-objective artificial immune algorithm for parameter optimization in support vector machine , 2011, Appl. Soft Comput..

[67]  Xin-She Yang,et al.  Multiobjective cuckoo search for design optimization , 2013, Comput. Oper. Res..

[68]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[69]  Kalyanmoy Deb,et al.  Feasibility preserving constraint-handling strategies for real parameter evolutionary optimization , 2015, Comput. Optim. Appl..

[70]  Fernando Alonso,et al.  Intensity-modulated radiotherapy – a large scale multi-criteria programming problem , 2003, OR Spectr..

[71]  Kalyanmoy Deb,et al.  Data mining methods for knowledge discovery in multi-objective optimization: Part A - Survey , 2017, Expert Syst. Appl..

[72]  Hao Zhang,et al.  A hybrid multi-objective artificial bee colony algorithm for burdening optimization of copper strip production , 2012 .

[73]  Martin J. Oates,et al.  PESA-II: region-based selection in evolutionary multiobjective optimization , 2001 .

[74]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[75]  Jürgen Teich,et al.  Covering Pareto-optimal fronts by subswarms in multi-objective particle swarm optimization , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[76]  G. Moslehi,et al.  A Pareto approach to multi-objective flexible job-shop scheduling problem using particle swarm optimization and local search , 2011 .

[77]  Xavier Gandibleux,et al.  Multiobjective Combinatorial Optimization — Theory, Methodology, and Applications , 2003 .

[78]  Andrew Lewis,et al.  Grey Wolf Optimizer , 2014, Adv. Eng. Softw..

[79]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[80]  Xin-She Yang,et al.  Bat algorithm for multi-objective optimisation , 2011, Int. J. Bio Inspired Comput..

[81]  Carlos A. Coello Coello,et al.  Current and Future Research Trends in Evolutionary Multiobjective Optimization , 2005 .

[82]  S. N. Omkar,et al.  Applied Soft Computing Artificial Bee Colony (abc) for Multi-objective Design Optimization of Composite Structures , 2022 .

[83]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[84]  Qingfu Zhang,et al.  Multiobjective optimization Test Instances for the CEC 2009 Special Session and Competition , 2009 .

[85]  Dan Simon,et al.  Biogeography-Based Optimization , 2022 .

[86]  Marc J. Schniederjans,et al.  A multi-criteria modeling approach to jury selection , 2005 .

[87]  Ralph E. Steuer,et al.  A multi-period, multiple criteria optimization system for manpower planning☆ , 1988 .

[88]  Reza Akbari,et al.  A multi-objective artificial bee colony algorithm , 2012, Swarm Evol. Comput..

[89]  Per Joakim Agrell,et al.  An interactive multicriteria decision model for multipurpose reservoir management: the Shellmouth Reservoir , 1998 .

[90]  Xin-She Yang,et al.  Engineering optimisation by cuckoo search , 2010 .

[91]  Yujia Wang,et al.  Particle swarm optimization with preference order ranking for multi-objective optimization , 2009, Inf. Sci..

[92]  William K. Smith Multiobjective decision analysis with engineering and business applications , 1983 .

[93]  Bijaya K. Panigrahi,et al.  Application of Multi-Objective Teaching-Learning-Based Algorithm to an Economic Load Dispatch Problem with Incommensurable Objectives , 2011, SEMCCO.

[94]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[95]  Eckart Zitzler,et al.  Evolutionary algorithms for multiobjective optimization: methods and applications , 1999 .

[96]  Abdullah Al Mamun,et al.  An evolutionary artificial immune system for multi-objective optimization , 2008, Eur. J. Oper. Res..

[97]  Kevin E Lansey,et al.  Optimization of Water Distribution Network Design Using the Shuffled Frog Leaping Algorithm , 2003 .

[98]  Deming Lei,et al.  Multi-objective production scheduling: a survey , 2009 .

[99]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[100]  R. Venkata Rao,et al.  Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems , 2011, Comput. Aided Des..

[101]  Qingfu Zhang,et al.  Multiobjective evolutionary algorithms: A survey of the state of the art , 2011, Swarm Evol. Comput..

[102]  Vimal J. Savsani,et al.  Effect of hybridizing Biogeography-Based Optimization (BBO) technique with Artificial Immune Algorithm (AIA) and Ant Colony Optimization (ACO) , 2014, Appl. Soft Comput..

[103]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[104]  Xin-She Yang,et al.  Firefly Algorithms for Multimodal Optimization , 2009, SAGA.

[105]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.