A unifying theory of a posteriori error control for nonconforming finite element methods

Residual-based a posteriori error estimates were derived within one unifying framework for lowest-order conforming, nonconforming, and mixed finite element schemes in Carstensen [Numer Math 100:617–637, 2005]. Therein, the key assumption is that the conforming first-order finite element space $$V_h^c$$ annulates the linear and bounded residual ℓ written $$V_h^c \subseteq {\rm ker} \ell$$ . That excludes particular nonconforming finite element methods (NCFEMs) on parallelograms in that $$V_h^c \not\subset {\rm ker} \ell$$ . The present paper generalises the aforementioned theory to more general situations to deduce new a posteriori error estimates, also for mortar and discontinuous Galerkin methods. The key assumption is the existence of some bounded linear operator $$\Pi: V_h^c \rightarrow V_h^{nc}$$ with some elementary properties. It is conjectured that the more general hypothesis (H1)–(H3) can be established for all known NCFEMs. Applications on various nonstandard finite element schemes for the Laplace, Stokes, and Navier–Lamé equations illustrate the presented unifying theory of a posteriori error control for NCFEM.

[1]  Ohannes A. Karakashian,et al.  Piecewise solenoidal vector fields and the Stokes problem , 1990 .

[2]  Dongwoo Sheen,et al.  P1-Nonconforming Quadrilateral Finite Element Methods for Second-Order Elliptic Problems , 2003, SIAM J. Numer. Anal..

[3]  Rüdiger Verführt,et al.  A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.

[4]  S. C. Brenner,et al.  Linear finite element methods for planar linear elasticity , 1992 .

[5]  Carsten Carstensen,et al.  Averaging technique for FE – a posteriori error control in elasticity. Part I: Conforming FEM , 2001 .

[6]  Frédéric Hecht,et al.  Error indicators for the mortar finite element discretization of the Laplace equation , 2002, Math. Comput..

[7]  Mark Ainsworth,et al.  Robust A Posteriori Error Estimation for Nonconforming Finite Element Approximation , 2004, SIAM J. Numer. Anal..

[8]  Carsten Carstensen,et al.  A posteriori error estimates for mixed FEM in elasticity , 1998, Numerische Mathematik.

[9]  G. A. Baker Finite element methods for elliptic equations using nonconforming elements , 1977 .

[10]  Paul Houston,et al.  Energy Norm shape A Posteriori Error Estimation for Mixed Discontinuous Galerkin Approximations of the Stokes Problem , 2005, J. Sci. Comput..

[11]  R. Rannacher,et al.  Simple nonconforming quadrilateral Stokes element , 1992 .

[12]  J. C. Simo,et al.  A CLASS OF MIXED ASSUMED STRAIN METHODS AND THE METHOD OF INCOMPATIBLE MODES , 1990 .

[13]  D. Arnold,et al.  Discontinuous Galerkin Methods for Elliptic Problems , 2000 .

[14]  F. Thomasset Finite element methods for Navier-Stokes equations , 1980 .

[15]  Carsten Carstensen,et al.  A posteriori error control in low-order finite element discretisations of incompressible stationary flow problems , 2001, Math. Comput..

[16]  Guido Kanschat,et al.  A posteriori error estimates¶for nonconforming finite element schemes , 1999 .

[17]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[18]  Ilaria Perugia,et al.  Mixed Discontinuous Galerkin Approximation of the Maxwell Operator: Non-Stabilized Formulation , 2005, J. Sci. Comput..

[19]  Ohannes A. Karakashian,et al.  A Posteriori Error Estimates for a Discontinuous Galerkin Approximation of Second-Order Elliptic Problems , 2003, SIAM J. Numer. Anal..

[20]  Carsten Carstensen,et al.  Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM , 2002, Math. Comput..

[21]  M. Wheeler An Elliptic Collocation-Finite Element Method with Interior Penalties , 1978 .

[22]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[23]  M. Crouzeix,et al.  Nonconforming finite elements for the Stokes problem , 1989 .

[24]  J. Douglas,et al.  Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods , 1976 .

[25]  Ohannes A. Karakashian,et al.  A Nonconforming Finite Element Method for the Stationary Navier--Stokes Equations , 1998 .

[26]  D. Schötzau,et al.  ENERGY NORM A POSTERIORI ERROR ESTIMATION OF hp-ADAPTIVE DISCONTINUOUS GALERKIN METHODS FOR ELLIPTIC PROBLEMS , 2007 .

[27]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[28]  R. Durán,et al.  A posteriori error estimators for nonconforming finite element methods , 1996 .

[29]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .

[30]  Zhongci Shi A convergence condition for the quadrilateral Wilson element , 1984 .

[31]  Ronald H. W. Hoppe,et al.  Element oriented and edge oriented local error estimators for nonconforming finite element methods , 1992, Forschungsberichte, TU Munich.

[32]  C. Carstensen QUASI-INTERPOLATION AND A POSTERIORI ERROR ANALYSIS IN FINITE ELEMENT METHODS , 1999 .

[33]  Edward L. Wilson,et al.  Incompatible Displacement Models , 1973 .

[34]  Carsten Carstensen,et al.  A posteriori error estimates for nonconforming finite element methods , 2002, Numerische Mathematik.

[35]  R. Stenberg A family of mixed finite elements for the elasticity problem , 1988 .

[36]  I. Babuska,et al.  The finite element method and its reliability , 2001 .

[37]  Bernardo Cockburn Discontinuous Galerkin methods , 2003 .

[38]  Sharon L. Wolchik 1989 , 2009 .

[39]  R. Durán,et al.  Error estimators for nonconforming finite element approximations of the Stokes problem , 1995 .

[40]  Thomas P. Wihler Locking-free adaptive discontinuous Galerkin FEM for linear elasticity problems , 2006, Math. Comput..

[41]  Serge Nicaise,et al.  Numerische Simulation Auf Massiv Parallelen Rechnern a Posteriori Error Estimation for the Stokes Problem: Anisotropic and Isotropic Discretizations , 2022 .

[42]  Stefan Turek,et al.  Dual weighted a posteriori error estimation for a new nonconforming linear finite element on quadrilaterals , 2005 .

[43]  S. Fenves Numerical and computer methods in structural mechanics , 1973 .

[44]  Q. Lin,et al.  Superconvergence and extrapolation of non-conforming low order finite elements applied to the Poisson equation , 2005 .

[45]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .

[46]  Gary R. Consolazio,et al.  Finite Elements , 2007, Handbook of Dynamic System Modeling.

[47]  D. Schötzau,et al.  An hp-adaptive mixed discontinuous Galerkin FEM for nearly incompressible linear elasticity , 2006 .

[48]  Christine Bernardi,et al.  An error indicator for mortar element solutions to the Stokes problem , 2001 .

[49]  Carsten Carstensen,et al.  A unifying theory of a posteriori finite element error control , 2005, Numerische Mathematik.

[50]  Shi,et al.  CONSTRAINED QUADRILATERAL NONCONFORMING ROTATED Q1 ELEMENT , 2005 .

[51]  Carsten Carstensen,et al.  Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II: Higher order FEM , 2002, Math. Comput..

[52]  Mary F. Wheeler,et al.  A Posteriori error estimates for a discontinuous galerkin method applied to elliptic problems. Log number: R74 , 2003 .

[53]  J. Douglas,et al.  A stable nonconforming quadrilateral finite element method for the stationary Stokes and Navier–Stokes equations , 1999 .

[54]  R. Verfürth A posteriori error estimators for the Stokes equations , 1989 .

[55]  R. Kouhia,et al.  A linear nonconforming finite element method for nearly incompressible elasticity and stokes flow , 1995 .

[56]  Bernardo Cockburn,et al.  An A Posteriori Error Estimate for the Local Discontinuous Galerkin Method Applied to Linear and Nonlinear Diffusion Problems , 2005, J. Sci. Comput..

[57]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[58]  Dongwoo Sheen,et al.  Nonconforming Galerkin methods based on quadrilateral elements for second order elliptic problems , 1999 .

[59]  Mary F. Wheeler A Posteriori Error Estimates and Mesh Adaptation Strategy for Discontinuous Galerkin Methods Applied to Diffusion Problems , 2000 .

[60]  Dongwoo Sheen,et al.  A Locking-Free Nonconforming Finite Element Method for Planar Linear Elasticity , 2003, Adv. Comput. Math..

[61]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[62]  R. S. Falk Nonconforming finite element methods for the equations of linear elasticity , 1991 .

[63]  C. Bernardi,et al.  A New Nonconforming Approach to Domain Decomposition : The Mortar Element Method , 1994 .

[64]  Serge Nicaise,et al.  Isotropic and anisotropic a posteriori error estimation of the mixed finite element method for second order operators in divergence form. , 2005 .

[65]  Anthony T. Patera,et al.  Domain Decomposition by the Mortar Element Method , 1993 .

[66]  Zhongci Shi The F-E-M test for convergence of nonconforming finite elements , 1987 .

[67]  V. Girault,et al.  A Local Regularization Operator for Triangular and Quadrilateral Finite Elements , 1998 .

[68]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[69]  Mark Ainsworth A posteriori error estimation for non-conforming quadrilateral finite elements , 2005 .

[70]  Stefan Turek,et al.  Numerical analysis for a new non-conforming linear finite element on quadrilaterals , 2006 .

[71]  Jun Hu,et al.  Framework for the A Posteriori Error Analysis of Nonconforming Finite Elements , 2007, SIAM J. Numer. Anal..

[72]  R. Verfürth,et al.  Edge Residuals Dominate A Posteriori Error Estimates for Low Order Finite Element Methods , 1999 .

[73]  Peter Hansbo,et al.  Energy norm a posteriori error estimation for discontinuous Galerkin methods , 2003 .

[74]  Mary F. Wheeler,et al.  Energy Norm A Posteriori Error Estimation for Discontinuous Galerkin Approximations of Reactive Transport Problems , 2022 .

[75]  Barbara I. Wohlmuth,et al.  A residual based error estimator for mortar finite element discretizations , 1999, Numerische Mathematik.

[76]  N. SIAMJ. ANALYSIS OF SOME QUADRILATERAL NONCONFORMING ELEMENTS FOR INCOMPRESSIBLE ELASTICITY , 1997 .

[77]  Carsten Carstensen,et al.  Uniform convergence and a posteriori error estimators for the enhanced strain finite element method , 2004, Numerische Mathematik.

[78]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .