Rigorous numerics for analytic solutions of differential equations: the radii polynomial approach

Judicious use of interval arithmetic, combined with careful pen and paper estimates, leads to effective strategies for computer assisted analysis of nonlinear operator equations. The method of radii polynomials is an efficient tool for bounding the smallest and largest neighborhoods on which a Newton-like operator associated with a nonlinear equation is a contraction mapping. The method has been used to study solutions of ordinary, partial, and delay differential equations such as equilibria, periodic orbits, solutions of initial value problems, heteroclinic and homoclinic connecting orbits in the C category of functions. In the present work we adapt the method of radii polynomials to the analytic category. For ease of exposition we focus on studying periodic solutions in Cartesian products of infinite sequence spaces. We derive the radii polynomials for some specific application problems, and give a number of computer assisted proofs in the analytic framework.

[1]  Jean-Philippe Lessard,et al.  Global Bifurcation Diagrams of Steady States of Systems of PDEs via Rigorous Numerics: a 3-Component Reaction-Diffusion System , 2013 .

[2]  Jean-Philippe Lessard,et al.  Computational fixed-point theory for differential delay equations with multiple time lags , 2012 .

[3]  Peter Wittwer,et al.  Computer-Assisted Proofs in Analysis and Programming in Logic: A case Study , 1996, SIAM Rev..

[4]  Jean-Philippe Lessard,et al.  Stationary Coexistence of Hexagons and Rolls via Rigorous Computations , 2015, SIAM J. Appl. Dyn. Syst..

[5]  Jean-Philippe Lessard,et al.  Efficient Rigorous Numerics for Higher-Dimensional PDEs via One-Dimensional Estimates , 2013, SIAM J. Numer. Anal..

[6]  Konstantin Mischaikow,et al.  Validated continuation over large parameter ranges for equilibria of PDEs , 2008, Math. Comput. Simul..

[7]  中尾 充宏 Numerical Verification Methods for Solutions of Ordinary and Partial Differential Equations (数学解析の理論的展開の計算機上での遂行可能性) , 2000 .

[8]  Jean-Philippe Lessard,et al.  Computer Assisted Proof of Transverse Saddle-to-Saddle Connecting Orbits for First Order Vector Fields , 2014 .

[9]  Marian Gidea,et al.  Covering relations for multidimensional dynamical systems , 2004 .

[10]  Bernd Krauskopf,et al.  Numerical Continuation Methods for Dynamical Systems , 2007 .

[11]  Andréa Deschênes,et al.  Coexistence of hexagons and rolls , 2014 .

[12]  Jean-Philippe Lessard,et al.  Analytic estimates and rigorous continuation for equilibria of higher-dimensional PDEs , 2010 .

[13]  Konstantin Mischaikow,et al.  Validated Continuation for Equilibria of PDEs , 2007, SIAM J. Numer. Anal..

[14]  William Arveson,et al.  A Short Course on Spectral Theory , 2001 .

[15]  J. F. Williams,et al.  Rigorous Computation of a Radially Symmetric Localized Solution in a Ginzburg-Landau Problem , 2015, SIAM J. Appl. Dyn. Syst..

[16]  Konstantin Mischaikow,et al.  A Rigorous Numerical Method for the Global Analysis of Infinite-Dimensional Discrete Dynamical Systems , 2004, SIAM J. Appl. Dyn. Syst..

[17]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[18]  Angel Jorba,et al.  A Software Package for the Numerical Integration of ODEs by Means of High-Order Taylor Methods , 2005, Exp. Math..

[19]  Jean-Philippe Lessard,et al.  Rigorous Numerics in Floquet Theory: Computing Stable and Unstable Bundles of Periodic Orbits , 2011, SIAM J. Appl. Dyn. Syst..

[20]  J. Lessard Recent advances about the uniqueness of the slowly oscillating periodic solutions of Wright's equation , 2009, 0909.4107.

[21]  Jean-Philippe Lessard,et al.  Rigorous computation of smooth branches of equilibria for the three dimensional Cahn–Hilliard equation , 2011, Numerische Mathematik.

[22]  Siegfried M. Rump,et al.  Verification methods: rigorous results using floating-point arithmetic , 2010, Acta Numerica.

[23]  Donald E. Knuth,et al.  The Art of Computer Programming, Vol. 2 , 1981 .

[24]  J. Eckmann,et al.  A computer-assisted proof of universality for area-preserving maps , 1984 .

[25]  Jean-Philippe Lessard,et al.  Coexistence of nontrivial solutions of the one-dimensional Ginzburg-Landau equation: A computer-assisted proof , 2014, European Journal of Applied Mathematics.

[26]  Konstantin Mischaikow,et al.  Rigorous Numerics for Symmetric Connecting Orbits: Even Homoclinics of the Gray-Scott Equation , 2011, SIAM J. Math. Anal..

[27]  J. Swift,et al.  Hydrodynamic fluctuations at the convective instability , 1977 .

[28]  Jean-Philippe Lessard,et al.  Chaotic Braided Solutions via Rigorous Numerics: Chaos in the Swift-Hohenberg Equation , 2008, SIAM J. Appl. Dyn. Syst..

[29]  O. Lanford A computer-assisted proof of the Feigenbaum conjectures , 1982 .

[30]  Siegfried M. Rump,et al.  INTLAB - INTerval LABoratory , 1998, SCAN.

[31]  Alan R. Champneys,et al.  Numerical Computation of Coherent Structures , 2007 .

[32]  Jean-Philippe Lessard,et al.  Existence of secondary bifurcations or isolas for PDEs , 2011 .

[33]  Jean-Philippe Lessard,et al.  Rigorous Numerics for Nonlinear Differential Equations Using Chebyshev Series , 2014, SIAM J. Numer. Anal..

[34]  Holger Teismann,et al.  Rigorous numerics for NLS: bound states, spectra, and controllability , 2013, 1310.6531.

[35]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[36]  Jean-Philippe Lessard,et al.  Parameterization of Invariant Manifolds for Periodic Orbits I: Efficient Numerics via the Floquet Normal Form , 2015, SIAM J. Appl. Dyn. Syst..

[37]  Konstantin Mischaikow,et al.  Rigorous Computations of Homoclinic Tangencies , 2006, SIAM J. Appl. Dyn. Syst..

[38]  K. Mischaikow,et al.  Chaos in the Lorenz equations: a computer-assisted proof , 1995, math/9501230.

[39]  Konstantin Mischaikow,et al.  Computational Proofs in Dynamics , 2012 .

[40]  Konstantin Mischaikow,et al.  Global smooth solution curves using rigorous branch following , 2010, Math. Comput..