Rigorous numerics for analytic solutions of differential equations: the radii polynomial approach
暂无分享,去创建一个
Jean-Philippe Lessard | Jason D. Mireles-James | Allan Hungria | J. Lessard | J. Mireles-James | Allan Hungria
[1] Jean-Philippe Lessard,et al. Global Bifurcation Diagrams of Steady States of Systems of PDEs via Rigorous Numerics: a 3-Component Reaction-Diffusion System , 2013 .
[2] Jean-Philippe Lessard,et al. Computational fixed-point theory for differential delay equations with multiple time lags , 2012 .
[3] Peter Wittwer,et al. Computer-Assisted Proofs in Analysis and Programming in Logic: A case Study , 1996, SIAM Rev..
[4] Jean-Philippe Lessard,et al. Stationary Coexistence of Hexagons and Rolls via Rigorous Computations , 2015, SIAM J. Appl. Dyn. Syst..
[5] Jean-Philippe Lessard,et al. Efficient Rigorous Numerics for Higher-Dimensional PDEs via One-Dimensional Estimates , 2013, SIAM J. Numer. Anal..
[6] Konstantin Mischaikow,et al. Validated continuation over large parameter ranges for equilibria of PDEs , 2008, Math. Comput. Simul..
[7] 中尾 充宏. Numerical Verification Methods for Solutions of Ordinary and Partial Differential Equations (数学解析の理論的展開の計算機上での遂行可能性) , 2000 .
[8] Jean-Philippe Lessard,et al. Computer Assisted Proof of Transverse Saddle-to-Saddle Connecting Orbits for First Order Vector Fields , 2014 .
[9] Marian Gidea,et al. Covering relations for multidimensional dynamical systems , 2004 .
[10] Bernd Krauskopf,et al. Numerical Continuation Methods for Dynamical Systems , 2007 .
[11] Andréa Deschênes,et al. Coexistence of hexagons and rolls , 2014 .
[12] Jean-Philippe Lessard,et al. Analytic estimates and rigorous continuation for equilibria of higher-dimensional PDEs , 2010 .
[13] Konstantin Mischaikow,et al. Validated Continuation for Equilibria of PDEs , 2007, SIAM J. Numer. Anal..
[14] William Arveson,et al. A Short Course on Spectral Theory , 2001 .
[15] J. F. Williams,et al. Rigorous Computation of a Radially Symmetric Localized Solution in a Ginzburg-Landau Problem , 2015, SIAM J. Appl. Dyn. Syst..
[16] Konstantin Mischaikow,et al. A Rigorous Numerical Method for the Global Analysis of Infinite-Dimensional Discrete Dynamical Systems , 2004, SIAM J. Appl. Dyn. Syst..
[17] Donald Ervin Knuth,et al. The Art of Computer Programming , 1968 .
[18] Angel Jorba,et al. A Software Package for the Numerical Integration of ODEs by Means of High-Order Taylor Methods , 2005, Exp. Math..
[19] Jean-Philippe Lessard,et al. Rigorous Numerics in Floquet Theory: Computing Stable and Unstable Bundles of Periodic Orbits , 2011, SIAM J. Appl. Dyn. Syst..
[20] J. Lessard. Recent advances about the uniqueness of the slowly oscillating periodic solutions of Wright's equation , 2009, 0909.4107.
[21] Jean-Philippe Lessard,et al. Rigorous computation of smooth branches of equilibria for the three dimensional Cahn–Hilliard equation , 2011, Numerische Mathematik.
[22] Siegfried M. Rump,et al. Verification methods: rigorous results using floating-point arithmetic , 2010, Acta Numerica.
[23] Donald E. Knuth,et al. The Art of Computer Programming, Vol. 2 , 1981 .
[24] J. Eckmann,et al. A computer-assisted proof of universality for area-preserving maps , 1984 .
[25] Jean-Philippe Lessard,et al. Coexistence of nontrivial solutions of the one-dimensional Ginzburg-Landau equation: A computer-assisted proof , 2014, European Journal of Applied Mathematics.
[26] Konstantin Mischaikow,et al. Rigorous Numerics for Symmetric Connecting Orbits: Even Homoclinics of the Gray-Scott Equation , 2011, SIAM J. Math. Anal..
[27] J. Swift,et al. Hydrodynamic fluctuations at the convective instability , 1977 .
[28] Jean-Philippe Lessard,et al. Chaotic Braided Solutions via Rigorous Numerics: Chaos in the Swift-Hohenberg Equation , 2008, SIAM J. Appl. Dyn. Syst..
[29] O. Lanford. A computer-assisted proof of the Feigenbaum conjectures , 1982 .
[30] Siegfried M. Rump,et al. INTLAB - INTerval LABoratory , 1998, SCAN.
[31] Alan R. Champneys,et al. Numerical Computation of Coherent Structures , 2007 .
[32] Jean-Philippe Lessard,et al. Existence of secondary bifurcations or isolas for PDEs , 2011 .
[33] Jean-Philippe Lessard,et al. Rigorous Numerics for Nonlinear Differential Equations Using Chebyshev Series , 2014, SIAM J. Numer. Anal..
[34] Holger Teismann,et al. Rigorous numerics for NLS: bound states, spectra, and controllability , 2013, 1310.6531.
[35] David Thomas,et al. The Art in Computer Programming , 2001 .
[36] Jean-Philippe Lessard,et al. Parameterization of Invariant Manifolds for Periodic Orbits I: Efficient Numerics via the Floquet Normal Form , 2015, SIAM J. Appl. Dyn. Syst..
[37] Konstantin Mischaikow,et al. Rigorous Computations of Homoclinic Tangencies , 2006, SIAM J. Appl. Dyn. Syst..
[38] K. Mischaikow,et al. Chaos in the Lorenz equations: a computer-assisted proof , 1995, math/9501230.
[39] Konstantin Mischaikow,et al. Computational Proofs in Dynamics , 2012 .
[40] Konstantin Mischaikow,et al. Global smooth solution curves using rigorous branch following , 2010, Math. Comput..