Intraspecific variation of Centruroides sculpturatus scorpion venom from two regions of Arizona.

[1]  M. Paingankar,et al.  First molecular phylogeny of scorpions of the family Buthidae from India , 2017, Mitochondrial DNA. Part A, DNA mapping, sequencing, and analysis.

[2]  L. Possani,et al.  Pi5 and Pi6, two undescribed peptides from the venom of the scorpion Pandinus imperator and their effects on K+‐channels , 2017, Toxicon : official journal of the International Society on Toxinology.

[3]  L. Possani,et al.  Functional and immuno-reactive characterization of a previously undescribed peptide from the venom of the scorpion Centruroides limpidus , 2017, Peptides.

[4]  L. Possani,et al.  Scorpions from Mexico: From Species Diversity to Venom Complexity , 2015, Toxins.

[5]  R. Bryson,et al.  Geographic variation in the thermal biology of a widespread Sonoran Desert arachnid, Centruroides sculpturatus (Arachnida: Scorpiones) , 2015 .

[6]  Walter Murillo Arango,et al.  Intraspecific Variation of Centruroides Edwardsii Venom from Two Regions of Colombia , 2014, Toxins.

[7]  V. Quintero-Hernández,et al.  Scorpion venom components that affect ion-channels function. , 2013, Toxicon : official journal of the International Society on Toxinology.

[8]  M. R. Graham,et al.  An Arizona Bark Scorpion (Centruroides sculpturatus) Found Consuming a Venomous Prey Item Nearly Twice Its Length , 2013 .

[9]  J. Rodríguez-Robles,et al.  Reproductive tradeoff limits the predatory efficiency of female Arizona Bark Scorpions (Centruroides sculpturatus) , 2013, BMC Evolutionary Biology.

[10]  L. Possani,et al.  OcyKTx2, a new K+-channel toxin characterized from the venom of the scorpion Opisthacanthus cayaporum , 2013, Peptides.

[11]  L. Possani,et al.  Scorpion beta-toxins and voltage-gated sodium channels: interactions and effects. , 2013, Frontiers in bioscience.

[12]  M. Gurevitz Mapping of scorpion toxin receptor sites at voltage-gated sodium channels. , 2012, Toxicon : official journal of the International Society on Toxinology.

[13]  J. Tytgat,et al.  Isolation and characterization of two novel scorpion toxins: The alpha-toxin-like CeII8, specific for Na(v)1.7 channels and the classical anti-mammalian CeII9, specific for Na(v)1.4 channels. , 2010, Toxicon : official journal of the International Society on Toxinology.

[14]  Li Wenxin,et al.  Comparative venom gland transcriptome analysis of the scorpion Lychas mucronatus reveals intraspecific toxic gene diversity and new venomous components , 2010, BMC Genomics.

[15]  T. Uller,et al.  Giving offspring a head start in life: field and experimental evidence for selection on maternal basking behaviour in lizards , 2010, Journal of evolutionary biology.

[16]  B. E. Carlson,et al.  Temperature and desiccation effects on the antipredator behavior of Centruroides vittatus (Scorpiones: Buthidae) , 2009 .

[17]  M. Delepierre,et al.  Solution structure of Cn5, a crustacean toxin found in the venom of the scorpions Centruroides noxius and Centruroides suffusus suffusus. , 2009, Biochimica et biophysica acta.

[18]  M. Omran,et al.  Intraspecific variation in the Egyptian scorpion Scorpio maurus palmatus venom collected from different biotopes. , 2009, Toxicon : official journal of the International Society on Toxinology.

[19]  M. Corona,et al.  Biochemical, genetic and physiological characterization of venom components from two species of scorpions: Centruroides exilicauda Wood and Centruroides sculpturatus Ewing. , 2004, Biochimie.

[20]  E. Wanke,et al.  NMR solution structure of Cn12, a novel peptide from the Mexican scorpion Centruroides noxius with a typical β-toxin sequence but with α-like physiological activity , 2004 .

[21]  F. LoVecchio,et al.  Scorpion Envenomations in Young Children in Central Arizona , 2003, Journal of toxicology. Clinical toxicology.

[22]  H. Aréchigá,et al.  Cn11, the first example of a scorpion toxin that is a true blocker of Na(+) currents in crayfish neurons. , 2002, The Journal of experimental biology.

[23]  M. Corona,et al.  Genes and peptides from the scorpion Centruroides sculpturatus Ewing, that recognize Na(+)-channels. , 2001, Toxicon : official journal of the International Society on Toxinology.

[24]  G. Blouin‐Demers THERMAL ECOLOGY OF BLACK RAT SNAKES (ELAPHE OBSOLETA) IN A THERMALLY CHALLENGING ENVIRONMENT , 2001 .

[25]  C. McBain,et al.  Voltage‐gated potassium currents in stratum oriens‐alveus inhibitory neurones of the rat CA1 hippocampus. , 1995, The Journal of physiology.

[26]  B. Martin,et al.  Isolation and characterization of a novel toxin from the venom of the scorpion Centruroides limpidus limpidus Karsch. , 1994, Toxicon : official journal of the International Society on Toxinology.

[27]  R. Murphy,et al.  Isolation and primary structure of a potent toxin from the venom of the scorpion Centruroides sculpturatus Ewing. , 2009, International journal of peptide and protein research.

[28]  R. Berg,et al.  Envenomation by the scorpion Centruroides exilicauda (C sculpturatus): severe and unusual manifestations. , 1991, Pediatrics.

[29]  D. Kadouri,et al.  An excitatory and a depressant insect toxin from scorpion venom both affect sodium conductance and possess a common binding site. , 1985, Archives of biochemistry and biophysics.

[30]  P. Ryan,et al.  Envenomation by the scorpion Centruroides sculpturatus. , 1983, Journal of toxicology. Clinical toxicology.

[31]  W. Catterall Purification of a toxic protein from scorpion venom which activates the action potential Na+ ionophore. , 1976, The Journal of biological chemistry.

[32]  D. Babin,et al.  Amino acid sequence of neurotoxin I from Centruroides sculpturatus Ewing. , 1975, Archives of biochemistry and biophysics.

[33]  D. Babin,et al.  Amino acid sequences of neurotoxic protein variants from the venom of Centruroides sculpturatus Ewing. , 1974, Archives of biochemistry and biophysics.

[34]  N. F. Hadley,et al.  Surface Activities of Some North American Scorpions in Relation to Feeding , 1968 .