On the initial boundary value problem for the vacuum Einstein equations and geometric uniqueness

We study the initial boundary value problem (IBVP) for the vacuum Einstein equations in harmonic gauge by adding a new field corresponding to the choice of harmonic gauge. For the gauge-type field, both free initial and Dirichlet boundary data as well as initial and boundary data coupled to the metric are analysed and shown to lead to well-posed formulations of the IBVP. In addition, these formulations lead to a solution of the problem of geometric uniqueness, as emphasized by H. Friedrich. In analogy to the solution to the Cauchy problem, we also prove the existence of a unique maximal globally hyperbolic vacuum development of the initial boundary data.

[1]  George F. R. Ellis,et al.  The Large Scale Structure of Space-Time , 2023 .

[2]  Grigorios Fournodavlos,et al.  The initial boundary value problem in General Relativity: the umbilic case , 2021, 2104.08851.

[3]  Helmut Friedrich,et al.  Time-like hypersurfaces of prescribed mean extrinsic curvature , 2021, Classical and Quantum Gravity.

[4]  Jacques Smulevici,et al.  The Initial Boundary Value Problem for the Einstein Equations with Totally Geodesic Timelike Boundary , 2020, Communications in Mathematical Physics.

[5]  Jacques Smulevici,et al.  On the initial boundary value problem for the Einstein vacuum equations in the maximal gauge , 2019, 1912.07338.

[6]  J. Flores,et al.  Structure of globally hyperbolic spacetimes-with-timelike-boundary , 2018, 1808.04412.

[7]  Manoussos G. Grillakis,et al.  An Introduction to the Theory of Wave Maps and Related Geometric Problems , 2016 .

[8]  A. Enciso,et al.  Lorentzian Einstein metrics with prescribed conformal infinity , 2014, Journal of Differential Geometry.

[9]  W. Wong A comment on the construction of the maximal globally hyperbolic Cauchy development , 2013, 1310.1318.

[10]  Jan Sbierski On the Existence of a Maximal Cauchy Development for the Einstein Equations: a Dezornification , 2013, 1309.7591.

[11]  H. Ringström On the Topology and Future Stability of the Universe , 2013 .

[12]  H. Kreiss,et al.  Geometric boundary data for the gravitational field , 2013, 1302.0800.

[13]  O. Sarbach,et al.  Continuum and Discrete Initial-Boundary Value Problems and Einstein’s Field Equations , 2012, Living Reviews in Relativity.

[14]  David Parlongue Geometric uniqueness for non-vacuum Einstein equations and applications , 2011, 1109.0644.

[15]  B. Schmidt Einstein's Field Equations and Their Physical Implications: Selected Essays In Honour Of Jürgen Ehlers , 2010 .

[16]  H. Ringström The Cauchy Problem in General Relativity , 2009 .

[17]  H. Friedrich Initial boundary value problems for Einstein’s field equations and geometric uniqueness , 2009, 0903.5160.

[18]  Oscar A. Reula,et al.  Well-posed initial-boundary value problem for the harmonic Einstein equations using energy estimates , 2007, Classical and Quantum Gravity.

[19]  Michael T. Anderson Boundary value problems for Einstein metrics, I , 2006, math/0612647.

[20]  Sylvie Benzoni-Gavage,et al.  Multi-dimensional hyperbolic partial differential equations , 2006 .

[21]  H. Friedrich,et al.  The Cauchy problem for the Einstein equations , 2000, gr-qc/0002074.

[22]  H. Friedrich,et al.  The Initial Boundary Value Problem for Einstein's Vacuum Field Equation , 1999 .

[23]  S. Shapiro,et al.  On the numerical integration of Einstein's field equations , 1998, gr-qc/9810065.

[24]  H. Friedrich Einstein equations and conformal structure: Existence of Anti-de Sitter-type space-times , 1995 .

[25]  F. Massey,et al.  Differentiability of solutions to hyperbolic initial-boundary value problems , 1974 .

[26]  Y. Fourès-Bruhat,et al.  Théorème d'existence pour certains systèmes d'équations aux dérivées partielles non linéaires , 1952 .

[27]  W. Marsden I and J , 2012 .

[28]  Y. Choquet-bruhat General Relativity and the Einstein Equations , 2009 .

[29]  Oscar A. Reula,et al.  Communications in Mathematical Physics Boundary Conditions for Coupled Quasilinear Wave Equations with Application to Isolated Systems , 2009 .

[30]  I. Rodnianski The Cauchy problem in General Relativity , 2006 .

[31]  Daniel Tataru,et al.  ON THE REGULARITY OF BOUNDARY TRACES FOR THE WAVE EQUATION , 1998 .

[32]  A. Mokrane Problemes mixtes hyperboliques non lineaires , 1987 .

[33]  R. Geroch,et al.  Global aspects of the Cauchy problem in general relativity , 1969 .