On the initial boundary value problem for the vacuum Einstein equations and geometric uniqueness
暂无分享,去创建一个
[1] George F. R. Ellis,et al. The Large Scale Structure of Space-Time , 2023 .
[2] Grigorios Fournodavlos,et al. The initial boundary value problem in General Relativity: the umbilic case , 2021, 2104.08851.
[3] Helmut Friedrich,et al. Time-like hypersurfaces of prescribed mean extrinsic curvature , 2021, Classical and Quantum Gravity.
[4] Jacques Smulevici,et al. The Initial Boundary Value Problem for the Einstein Equations with Totally Geodesic Timelike Boundary , 2020, Communications in Mathematical Physics.
[5] Jacques Smulevici,et al. On the initial boundary value problem for the Einstein vacuum equations in the maximal gauge , 2019, 1912.07338.
[6] J. Flores,et al. Structure of globally hyperbolic spacetimes-with-timelike-boundary , 2018, 1808.04412.
[7] Manoussos G. Grillakis,et al. An Introduction to the Theory of Wave Maps and Related Geometric Problems , 2016 .
[8] A. Enciso,et al. Lorentzian Einstein metrics with prescribed conformal infinity , 2014, Journal of Differential Geometry.
[9] W. Wong. A comment on the construction of the maximal globally hyperbolic Cauchy development , 2013, 1310.1318.
[10] Jan Sbierski. On the Existence of a Maximal Cauchy Development for the Einstein Equations: a Dezornification , 2013, 1309.7591.
[11] H. Ringström. On the Topology and Future Stability of the Universe , 2013 .
[12] H. Kreiss,et al. Geometric boundary data for the gravitational field , 2013, 1302.0800.
[13] O. Sarbach,et al. Continuum and Discrete Initial-Boundary Value Problems and Einstein’s Field Equations , 2012, Living Reviews in Relativity.
[14] David Parlongue. Geometric uniqueness for non-vacuum Einstein equations and applications , 2011, 1109.0644.
[15] B. Schmidt. Einstein's Field Equations and Their Physical Implications: Selected Essays In Honour Of Jürgen Ehlers , 2010 .
[16] H. Ringström. The Cauchy Problem in General Relativity , 2009 .
[17] H. Friedrich. Initial boundary value problems for Einstein’s field equations and geometric uniqueness , 2009, 0903.5160.
[18] Oscar A. Reula,et al. Well-posed initial-boundary value problem for the harmonic Einstein equations using energy estimates , 2007, Classical and Quantum Gravity.
[19] Michael T. Anderson. Boundary value problems for Einstein metrics, I , 2006, math/0612647.
[20] Sylvie Benzoni-Gavage,et al. Multi-dimensional hyperbolic partial differential equations , 2006 .
[21] H. Friedrich,et al. The Cauchy problem for the Einstein equations , 2000, gr-qc/0002074.
[22] H. Friedrich,et al. The Initial Boundary Value Problem for Einstein's Vacuum Field Equation , 1999 .
[23] S. Shapiro,et al. On the numerical integration of Einstein's field equations , 1998, gr-qc/9810065.
[24] H. Friedrich. Einstein equations and conformal structure: Existence of Anti-de Sitter-type space-times , 1995 .
[25] F. Massey,et al. Differentiability of solutions to hyperbolic initial-boundary value problems , 1974 .
[26] Y. Fourès-Bruhat,et al. Théorème d'existence pour certains systèmes d'équations aux dérivées partielles non linéaires , 1952 .
[27] W. Marsden. I and J , 2012 .
[28] Y. Choquet-bruhat. General Relativity and the Einstein Equations , 2009 .
[29] Oscar A. Reula,et al. Communications in Mathematical Physics Boundary Conditions for Coupled Quasilinear Wave Equations with Application to Isolated Systems , 2009 .
[30] I. Rodnianski. The Cauchy problem in General Relativity , 2006 .
[31] Daniel Tataru,et al. ON THE REGULARITY OF BOUNDARY TRACES FOR THE WAVE EQUATION , 1998 .
[32] A. Mokrane. Problemes mixtes hyperboliques non lineaires , 1987 .
[33] R. Geroch,et al. Global aspects of the Cauchy problem in general relativity , 1969 .