Thermo-Optic Switching

[1]  K. Petermann,et al.  Crosstalk-optimized integrated optical switching matrices in polymers by use of redundant switch elements , 2001, IEEE Photonics Technology Letters.

[2]  A. Yariv Coupled-mode theory for guided-wave optics , 1973 .

[3]  Masayuki Okuno,et al.  Low loss and high extinction ratio strictly nonblocking 16/spl times/16 thermooptic matrix switch on 6-in wafer using silica-based planar lightwave circuit technology , 2001 .

[4]  K. Sakuma,et al.  Low insertion-loss and high isolation polymeric Y-branching thermo-optic switch with partitioned heater , 2001, OFC 2001. Optical Fiber Communication Conference and Exhibit. Technical Digest Postconference Edition (IEEE Cat. 01CH37171).

[5]  K. Petermann,et al.  Reliable low cross talk digital optical switch based on a cascade like structure with small dimensions , 2001 .

[6]  Jong-Uk Bu,et al.  Low-power consumption polymeric attenuator using a micromachined membrane-type waveguide , 2000 .

[8]  R. C. Weast Handbook of chemistry and physics , 1973 .

[9]  Klaus Petermann,et al.  DIGITAL OPTICAL SWITCH BASED ON OVERSIZED POLYMER RIB WAVEGUIDES , 1996 .

[10]  L. Eldada,et al.  Advances in polymer integrated optics , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[11]  Min-Cheol Oh,et al.  Asymmetric X-junction thermooptic switches based on fluorinated polymer waveguides , 1998 .

[12]  T. Goh,et al.  Low-power consumption silica-based 2 x 2 thermooptic switch using trenched silicon substrate , 1999, IEEE Photonics Technology Letters.

[13]  Tae-Won Oh,et al.  Polymeric 1x3 Thermo-Optic Switch , 1999 .

[14]  M. Hoffmann,et al.  Thermooptical digital switch arrays in silica-on-silicon with defined zero-voltage state , 1998 .

[15]  E. S. Trommel,et al.  Polymeric optical waveguide switch using the thermooptic effect , 1989 .

[16]  K. Petermann,et al.  Polymer digital optical switch with an integrated attenuator , 2001, IEEE Photonics Technology Letters.

[17]  S. Imamura,et al.  Polymer waveguide thermooptic switch with low electric power consumption at 1.3 mu m , 1993, IEEE Photonics Technology Letters.

[18]  K. Petermann,et al.  Shaping the digital optical switch using evolution strategies and BPM , 1997, IEEE Photonics Technology Letters.

[19]  J. Dugas,et al.  Refractive-index variations with temperature of PMMA and polycarbonate. , 1986, Applied optics.

[20]  M. Cappuzzo,et al.  Compact, low-loss 4/spl times/4 optical switch matrix using multimode interferometers , 2001 .

[21]  William K. Burns,et al.  Mode conversion in planar-dielectric separating waveguides , 1975 .

[22]  O. Ramer,et al.  Integrated optic electrooptic modulator electrode analysis , 1982 .

[23]  K. Satzke,et al.  Hybrid polymer/silica vertical coupler switch with <-32 dB polarisation-independent crosstalk , 2001 .

[24]  Larry R. Dalton,et al.  Three Dimensional Integrated Optics Using Polymers , 1999, Organic Thin Films for Photonics Applications.

[25]  H. Melchior,et al.  Low-power compact 2/spl times/2 thermooptic silica-on-silicon waveguide switch with fast response , 1998, IEEE Photonics Technology Letters.

[26]  Masayuki Okuno,et al.  High-Extinction Ratio and Low-Loss Silica-Based 8 8 Strictly Nonblocking Thermooptic , 1999 .

[27]  C. Tan,et al.  Review and analysis of refractive index temperature dependence in amorphous SiO2 , 1998 .

[28]  M. Haruna,et al.  Thermooptic deflection and switching in glass. , 1982, Applied optics.

[29]  Masayuki Okuno,et al.  High-extinction ratio and low-loss silica-based 8/spl times/8 strictly nonblocking thermooptic matrix switch , 1999 .

[30]  L. Eldada,et al.  Polymeric 16/spl times/16 digital optical switch matrix , 2001, Proceedings 27th European Conference on Optical Communication (Cat. No.01TH8551).

[31]  D. Marcuse Theory of dielectric optical waveguides , 1974 .

[32]  Paul Lambeck,et al.  Polymeric 8x8 digital optical switch matrix , 1996 .

[33]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .

[34]  R. Alferness Guided-wave devices for optical communication , 1981 .

[35]  J. Nye Physical Properties of Crystals: Their Representation by Tensors and Matrices , 1957 .

[36]  K. Petermann,et al.  4 x 4 digital optical matrix switch using polymeric oversized rib waveguides , 1998, IEEE Photonics Technology Letters.

[37]  Masamitsu Haruna,et al.  Thermo-optic effect in LiNbO3, for light deflection and switching , 1981 .

[38]  Yong Hyub Won,et al.  Very low crosstalk 1×2 digital optical switch integrated with variable optical attenuators , 2001 .

[39]  E.C.M. Pennings,et al.  Optical multi-mode interference devices based on self-imaging: principles and applications , 1995 .

[40]  T. Miya,et al.  Silica-based planar lightwave circuits: passive and thermally active devices , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[41]  T. C. Lee,et al.  Temperature dependence of index of refraction of polymeric waveguides , 1992 .

[42]  K. Petermann,et al.  Crosstalk-enhanced polymer digital optical switch based on a W-shape , 2000, IEEE Photonics Technology Letters.

[43]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[44]  Ray T. Chen Polymer-based photonic integrated circuits☆ , 1993 .

[45]  Albert Feldman,et al.  Optical and physical parameters of Plexiglas 55 and Lexan. , 1979, Applied optics.