Category theory as coherently constructive lattice theory : an illustration

Dijkstra and Scholten have formulat.ed a theorem st.at.ing that all disjunctivity properties of a predicat.e tral1sforlll('r are l>l'('served by t.he const.ruct.ion of least prefix points. An alternative proof of t.heir t.heorem is present.ed based on two fundamental fixed point theorems, t.he abst.ract.iol1 t.heorem and t.he fusion t.heorem, and the fact that suprema in a lattice arc ciefilH'd by a Galois connect.ion. The abstraction theorem seems to be new; t.he fusion t.heor('m is known but. it.s import.ance does not seem to be fully recognised. The abstract.ion t.heorem, t.he fusion t,h('orem, aud Dijkst.ra and Scholt.en's theorem are then generalised t.o the ('ont('xt of cat.egory t.heory and shown to be valid. None of the t.heorems in t.his cout.ext. seems t.o be kuowu, alt.hough specific inst.ances of Dijkstra and Seholt.en's t.heorem ,\l'P known. The main point. of the papPI' is t.o discuss the process of drawing inspiration from lattiee theory t.o formulat.e t,lworems ill cat.egory t.h('ory (first. advocated by Lambek in 1968). We advance the view t.hat., ill ord('r t.o ('ont.ribut.e to the development of programming met.hodology, cat.('gory t.lwory lllay \)(' profi t.ably regarded as "constructive" lattice theory in which t.1H' add('d valliI' li('s ill ('st.ablishing t.hat the constructions are "coherent.". This paper was specially prepared for I)l'Ps('nt.at.iou at. t.h(' meeting ofIFIP Working Group 2.3 (Programming Met.hodology), .luue H194. I-~uowledge of (elementary) lattice theory is assulIwd. Kuowkdgl' of ('at.('gory t.heory is 110t.

[1]  Grant Malcolm,et al.  Algebraic Data Types and Program Transformation , 1990 .

[2]  Edsger W. Dijkstra,et al.  Predicate Calculus and Program Semantics , 1989, Texts and Monographs in Computer Science.

[3]  P. D. Moerland,et al.  Exercises in multiprogramming , 1993 .

[4]  Jos C. M. Baeten,et al.  A Congruence Theorem for Structured Operational Semantics with Predicates , 1993, CONCUR.

[5]  Dana S. Scott,et al.  Data Types as Lattices , 1976, SIAM J. Comput..

[6]  Bart Jacobs,et al.  An Algebraic View of Structural Induction , 1994, CSL.

[7]  Andre Scedrov,et al.  Categories, allegories , 1990, North-Holland mathematical library.

[8]  Roland C. Backhouse,et al.  Calculating Path Algorithms , 1994, Sci. Comput. Program..

[9]  Michel A. Reniers,et al.  An Algebraic Semantics of Basic Message Sequence Charts , 1994, Comput. J..

[10]  J. Zwiers,et al.  Assertional Data Reification Proofs: Survey and Perspective , 1991 .

[11]  Aart Blokhuis,et al.  On the Equivalence Covering Number of Splitgraphs , 1995, Inf. Process. Lett..

[12]  Fairouz Kamareddine,et al.  Non well-foundedness and type freeness can unify the interpretation of functional application , 1992 .

[13]  Bruce W. Watson,et al.  The performance of single-keyword and multiple-keyword pattern matching algorithms , 1994 .

[14]  Erik Poll,et al.  Some categorical properties for a model for second order lambda calculus with subtyping , 1991 .

[15]  van Km Kees Hee,et al.  Systems engineering : a formal approach. Part I. System concepts , 1993 .

[16]  Dick Alstein,et al.  Distributed consensus and hard real-time systems , 1994 .

[17]  Fairouz Kamareddine,et al.  Beyond -reduction in Church's ! , 1996 .

[18]  Gerard Zwaan,et al.  A taxonomy of keyword pattern matching algorithms , 1992 .

[19]  Joachim Lambek,et al.  Least fixpoints of endofunctors of cartesian closed categories , 1993, Mathematical Structures in Computer Science.

[20]  R. Backhouse,et al.  Regular Algebra Applied to Path-finding Problems , 1975 .

[21]  Kees M. van Hee,et al.  Transforming Functional Database Schemes to Relational Representations , 1992, Specifications of Database Systems.

[22]  Jan Peleska,et al.  A comparison of Ward & Mellor's transformation schema with state & activitycharts , 1994 .

[23]  Ron Selj A New Method for Integrity Constraint Checking in Deductive Databases , 1994 .

[24]  J. Lambek A fixpoint theorem for complete categories , 1968 .

[25]  R. Backhouse,et al.  Mathematical induction made calculational , 1994 .

[26]  J. Lambek,et al.  Introduction to higher order categorical logic , 1986 .

[27]  Joyce L. Vedral,et al.  Functional Programming Languages and Computer Architecture , 1989, Lecture Notes in Computer Science.

[28]  Fairouz Kamareddine,et al.  A unified approach to type theory through a refined lambda-calculus , 1992 .