The effect of electrochemically active element species on the stability of the layered cathode–sulfide electrolyte interface

Illustration of the interfacial reaction between LiNixCo1−xO2 with different Ni/Co proportion and LSPSC in ASSLB.

[1]  Y. Lai,et al.  Toward the Practical and Scalable Fabrication of Sulfide‐Based All‐Solid‐State Batteries: Exploration of Slurry Process and Performance Enhancement Via the Addition of LiClO4 , 2023, Advanced Functional Materials.

[2]  Seungho Yu,et al.  Facile Method for the Formation of Intimate Interfaces in Sulfide-Based All-Solid-State Batteries. , 2022, ACS applied materials & interfaces.

[3]  G. Shao,et al.  Enabling Argyrodite Sulfides as Superb Solid‐State Electrolyte with Remarkable Interfacial Stability Against Electrodes , 2021, ENERGY & ENVIRONMENTAL MATERIALS.

[4]  Dawei Song,et al.  High-rate and long-life Ni-rich oxide cathode under high mass loading for sulfide-based all-solid-state lithium batteries , 2021 .

[5]  Qian Sun,et al.  Insight into cathode surface to boost the performance of solid-state batteries , 2021 .

[6]  Jun Chen,et al.  Recent breakthroughs and perspectives of high-energy layered oxide cathode materials for lithium ion batteries , 2020 .

[7]  Bingbing Chen,et al.  In-situ visualization of the space-charge-layer effect on interfacial lithium-ion transport in all-solid-state batteries , 2020, Nature Communications.

[8]  A. Sakuda,et al.  Effects of volume variations under different compressive pressures on the performance and microstructure of all-solid-state batteries , 2020 .

[9]  Seung‐Taek Myung,et al.  Recent Progress and Perspective of Advanced High‐Energy Co‐Less Ni‐Rich Cathodes for Li‐Ion Batteries: Yesterday, Today, and Tomorrow , 2020, Advanced Energy Materials.

[10]  Chunliang Li,et al.  Enhanced electrochemical performances of LiCoO2 cathode for all-solid-state lithium batteries by regulating crystallinity and composition of coating layer , 2020 .

[11]  Chunliang Li,et al.  Outstanding electrochemical performances of the all-solid-state lithium battery using Ni-rich layered oxide cathode and sulfide electrolyte , 2020 .

[12]  C. Yuan,et al.  Surface/Interface Structure Degradation of Ni‐Rich Layered Oxide Cathodes toward Lithium‐Ion Batteries: Fundamental Mechanisms and Remedying Strategies , 2019, Advanced Materials Interfaces.

[13]  Datong Song,et al.  Degradation Mechanisms and Mitigation Strategies of Nickel-Rich NMC-Based Lithium-Ion Batteries , 2019, Electrochemical Energy Reviews.

[14]  Tongchao Liu,et al.  Insight into the origin of lithium/nickel ions exchange in layered Li(NixMnyCoz)O2 cathode materials , 2018, Nano Energy.

[15]  M. Whittingham,et al.  Narrowing the Gap between Theoretical and Practical Capacities in Li‐Ion Layered Oxide Cathode Materials , 2017 .

[16]  T. Leichtweiss,et al.  Capacity Fade in Solid-State Batteries: Interphase Formation and Chemomechanical Processes in Nickel-Rich Layered Oxide Cathodes and Lithium Thiophosphate Solid Electrolytes , 2017 .

[17]  Venkatasubramanian Viswanathan,et al.  Review—Practical Challenges Hindering the Development of Solid State Li Ion Batteries , 2017 .

[18]  Kun Fu,et al.  Negating interfacial impedance in garnet-based solid-state Li metal batteries. , 2017, Nature materials.

[19]  R. Dedryvère,et al.  Redox activity of argyrodite Li6PS5Cl electrolyte in all-solid-state Li-ion battery: An XPS study , 2017 .

[20]  Jürgen Janek,et al.  A solid future for battery development , 2016, Nature Energy.

[21]  Satoshi Hori,et al.  High-power all-solid-state batteries using sulfide superionic conductors , 2016, Nature Energy.

[22]  S. Ong,et al.  Design principles for solid-state lithium superionic conductors. , 2015, Nature materials.

[23]  Min-Joon Lee,et al.  Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. , 2015, Angewandte Chemie.

[24]  Chong Seung Yoon,et al.  Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries , 2013 .

[25]  A. Majumdar,et al.  Opportunities and challenges for a sustainable energy future , 2012, Nature.

[26]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[27]  B. Scrosati,et al.  Lithium batteries: Status, prospects and future , 2010 .

[28]  A. Hayashi,et al.  Interfacial Observation between LiCoO2 Electrode and Li2S−P2S5 Solid Electrolytes of All-Solid-State Lithium Secondary Batteries Using Transmission Electron Microscopy† , 2010 .

[29]  Minoru Osada,et al.  LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries , 2007 .

[30]  Xiaoxiong Xu,et al.  All-solid-state lithium batteries with inorganic solid electrolytes: Review of fundamental science , 2015 .

[31]  Feng Wu,et al.  A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries , 2016 .