Role of Optical Coherence Tomography on Corneal Surface Laser Ablation

This paper focuses on reviewing the roles of optical coherence tomography (OCT) on corneal surface laser ablation procedures. OCT is an optical imaging modality that uses low-coherence interferometry to provide noninvasive cross-sectional imaging of tissue microstructure in vivo. There are two types of OCTs, each with transverse and axial spatial resolutions of a few micrometers: the time-domain and the fourier-domain OCTs. Both have been increasingly used by refractive surgeons and have specific advantages. Which of the current imaging instruments is a better choice depends on the specific application. In laser in situ keratomileusis (LASIK) and in excimer laser phototherapeutic keratectomy (PTK), OCT can be used to assess corneal characteristics and guide treatment decisions. OCT accurately measures central corneal thickness, evaluates the regularity of LASIK flaps, and quantifies flap and residual stromal bed thickness. When evaluating the ablation depth accuracy by subtracting preoperative from postoperative measurements, OCT pachymetry correlates well with laser ablation settings. In addition, OCT can be used to provide precise information on the morphology and depth of corneal pathologic abnormalities, such as corneal degenerations, dystrophies, and opacities, correlating with histopathologic findings.

[1]  D. Lam,et al.  Measurement of LASIK flap thickness with anterior segment optical coherence tomography. , 2008, Journal of refractive surgery.

[2]  Yan Li,et al.  A longitudinal study of LASIK flap and stromal thickness with high-speed optical coherence tomography. , 2007, Ophthalmology.

[3]  Jin Pyo Hong,et al.  Determination of treatment strategies for granular corneal dystrophy type 2 using Fourier-domain optical coherence tomography , 2009, British Journal of Ophthalmology.

[4]  Marinko V Sarunic,et al.  Imaging the ocular anterior segment with real-time, full-range Fourier-domain optical coherence tomography. , 2008, Archives of ophthalmology.

[5]  Yan Li,et al.  Repeatability of laser in situ keratomileusis flap thickness measurement by Fourier‐domain optical coherence tomography , 2011, Journal of cataract and refractive surgery.

[6]  J. Mehta,et al.  Laser in situ keratomileusis flap measurements: Comparison between observers and between spectral‐domain and time‐domain anterior segment optical coherence tomography , 2011, Journal of cataract and refractive surgery.

[7]  E. Manche,et al.  Comparison of intraoperative subtraction pachymetry and postoperative anterior segment optical coherence tomography of laser in situ keratomileusis flaps , 2011, Journal of cataract and refractive surgery.

[8]  Zsolt Bor,et al.  Randomized prospective clinical study comparing induced aberrations with IntraLase and Hansatome flap creation in fellow eyes: Potential impact on wavefront‐guided laser in situ keratomileusis , 2005, Journal of cataract and refractive surgery.

[9]  C. Rapuano Phototherapeutic keratectomy: who are the best candidates and how do you treat them? , 2010, Current opinion in ophthalmology.

[10]  Z. Wang,et al.  Corneal flap morphological analysis using anterior segment optical coherence tomography in laser in situ keratomileusis with femtosecond lasers versus mechanical microkeratome. , 2012, International journal of ophthalmology.

[11]  R. Silverman,et al.  Probability model of the inaccuracy of residual stromal thickness prediction to reduce the risk of ectasia after LASIK part I: quantifying individual risk. , 2006, Journal of refractive surgery.

[12]  M. Wojtkowski,et al.  Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range. , 2009, Optics express.

[13]  Carroll A.B. Webers,et al.  Value of optical coherence tomography for anterior segment surgery , 2010, Journal of cataract and refractive surgery.

[14]  Yoshiaki Yasuno,et al.  Anterior ocular biometry using 3-dimensional optical coherence tomography. , 2009, Ophthalmology.

[15]  Ronald R Krueger,et al.  Central and peripheral corneal thickness measured with optical coherence tomography, Scheimpflug imaging, and ultrasound pachymetry in normal, keratoconus‐suspect, and post–laser in situ keratomileusis eyes , 2009, Journal of cataract and refractive surgery.

[16]  Dariusz Dobrowolski,et al.  Anterior segment imaging: Fourier‐domain optical coherence tomography versus time‐domain optical coherence tomography , 2009, Journal of cataract and refractive surgery.

[17]  Dohyting Lee,et al.  Flap thickness reproducibility in laser in situ keratomileusis with a femtosecond laser: Optical coherence tomography measurement , 2008, Journal of cataract and refractive surgery.

[18]  Yan Li,et al.  Clinical and research applications of anterior segment optical coherence tomography – a review , 2009, Clinical & experimental ophthalmology.

[19]  R. D. Stulting,et al.  Analysis of microkeratome thin flap architecture using Fourier-domain optical coherence tomography. , 2011, Journal of refractive surgery.

[20]  D. Pham,et al.  Monitoring corneal structures with slitlamp‐adapted optical coherence tomography in laser in situ keratomileusis , 2004, Journal of cataract and refractive surgery.

[21]  D. Durrie,et al.  Femtosecond laser versus mechanical keratome flaps in wavefront‐guided laser in situ keratomileusis: Prospective contralateral eye study , 2005, Journal of cataract and refractive surgery.

[22]  Yan Li,et al.  Corneal pachymetry mapping with high-speed optical coherence tomography. , 2006, Ophthalmology.

[23]  R. Silverman,et al.  Arc-scanning very high-frequency digital ultrasound for 3D pachymetric mapping of the corneal epithelium and stroma in laser in situ keratomileusis. , 2000, Journal of refractive surgery.

[24]  R. D. Stulting,et al.  Phototherapeutic Keratectomy in Diffuse Stromal Haze in Granular Corneal Dystrophy Type 2 , 2013, Cornea.

[25]  David Huang,et al.  Repeatability of Pachymetric Mapping Using Fourier Domain Optical Coherence Tomography in Corneas With Opacities , 2012, Cornea.

[26]  J. Fujimoto,et al.  Optical Coherence Tomography , 1991 .

[27]  R. D. Stulting,et al.  Risk factors and prognosis for corneal ectasia after LASIK. , 2002, Ophthalmology.

[28]  D. Grewal,et al.  Assessment of central corneal thickness in normal, keratoconus, and post‐laser in situ keratomileusis eyes using Scheimpflug imaging, spectral domain optical coherence tomography, and ultrasound pachymetry , 2010, Journal of cataract and refractive surgery.

[29]  E. B. Rodrigues,et al.  Anterior Segment Tomography with the Cirrus Optical Coherence Tomography , 2012, Journal of ophthalmology.

[30]  J. Izatt,et al.  Real-time optical coherence tomography of the anterior segment at 1310 nm. , 2001, Archives of ophthalmology.

[31]  Yan Li,et al.  High-speed optical coherence tomography of corneal opacities. , 2007, Ophthalmology.

[32]  Sander R. Dubovy,et al.  In vivo morphologic characteristics of Salzmann nodular degeneration with ultra-high-resolution optical coherence tomography. , 2011, American journal of ophthalmology.

[33]  R. Silverman,et al.  Probability model of the inaccuracy of residual stromal thickness prediction to reduce the risk of ectasia after LASIK part II: quantifying population risk. , 2006, Journal of refractive surgery.

[34]  B. Vanderbeek,et al.  Bilateral Salzmann-like nodular corneal degeneration after laser in situ keratomileusis imaged with anterior segment optical coherence tomography and high-frequency ultrasound biomicroscopy. , 2009, Journal of cataract and refractive surgery.

[35]  C. Cheung,et al.  Agreement among 3 methods to measure corneal thickness: ultrasound pachymetry, Orbscan II, and Visante anterior segment optical coherence tomography. , 2007, Ophthalmology.

[36]  Walter Sekundo,et al.  Evaluation of Granular Corneal Dystrophy With Optical Coherent Tomography , 2004, Cornea.

[37]  G. Ripandelli,et al.  Optical coherence tomography. , 1998, Seminars in ophthalmology.

[38]  Z. Nagy,et al.  Ultrasound evaluation of flap thickness, ablation depth, and corneal edema after laser in situ keratomileusis. , 2004, Journal of refractive surgery.

[39]  E. Slate,et al.  Flap thickness accuracy: Comparison of 6 microkeratome models , 2004, Journal of cataract and refractive surgery.

[40]  B. Link,et al.  Long‐term outcome of excimer laser phototherapeutic keratectomy for treatment of Salzmann's nodular degeneration , 2005, Journal of cataract and refractive surgery.

[41]  T. Kohnen,et al.  Corneal architecture of femtosecond laser and microkeratome flaps imaged by anterior segment optical coherence tomography , 2009, Journal of cataract and refractive surgery.

[42]  David Huang,et al.  Analysis of Deposit Depth and Morphology in Granular Corneal Dystrophy Type 2 Using Fourier Domain Optical Coherence Tomography , 2011, Cornea.

[43]  R. Chuck,et al.  Update on phototherapeutic keratectomy , 2009, Current opinion in ophthalmology.

[44]  William J Feuer,et al.  Comparison of central corneal thickness using anterior segment optical coherence tomography vs ultrasound pachymetry. , 2008, American journal of ophthalmology.

[45]  E. Cohen,et al.  Excimer Laser Phototherapeutic Keratectomy for Keratoconus Nodules , 2009, Cornea.