Liouville chains: new hybrid vortex equilibria of the two-dimensional Euler equation

Abstract A large class of new exact solutions to the steady, incompressible Euler equation on the plane is presented. These hybrid solutions consist of a set of stationary point vortices embedded in a background sea of Liouville-type vorticity that is exponentially related to the stream function. The input to the construction is a ‘pure’ point vortex equilibrium in a background irrotational flow. Pure point vortex equilibria also appear as a parameter $A$ in the hybrid solutions approaches the limits $A\to 0,\infty$. While $A\to 0$ reproduces the input equilibrium, $A\to \infty$ produces a new pure point vortex equilibrium. We refer to the family of hybrid equilibria continuously parametrised by $A$ as a ‘Liouville link’. In some cases, the emergent point vortex equilibrium as $A\to \infty$ can itself be the input for a second family of hybrid equilibria linking, in a limit, to yet another pure point vortex equilibrium. In this way, Liouville links together form a ‘Liouville chain’. We discuss several examples of Liouville chains and demonstrate that they can have a finite or an infinite number of links. We show here that the class of hybrid solutions found by Crowdy (Phys. Fluids, vol. 15, 2003, pp. 3710–3717) and by Krishnamurthy et al. (J. Fluid Mech., vol. 874, 2019, R1) form the first two links in one such infinite chain. We also show that the stationary point vortex equilibria recently studied by Krishnamurthy et al. (Proc. R. Soc. A, vol. 476, 2020, 20200310) can be interpreted as the limits of a Liouville link. Our results point to a rich theoretical structure underlying this class of equilibria of the two-dimensional Euler equation.

[1]  A. Tur,et al.  Vortex structures with complex points singularities in two-dimensional Euler equations. New exact solutions , 2011, 1201.5271.

[2]  M. Pino,et al.  Two-dimensional Euler flows with concentrated vorticities , 2010 .

[3]  S. G. L. Smith How do singularities move in potential flow , 2011 .

[4]  G. Pedrizzetti,et al.  Vortex Dynamics , 2011 .

[5]  T. Sakajo Exact solution to a Liouville equation with Stuart vortex distribution on the surface of a torus , 2019, Proceedings of the Royal Society A.

[6]  Miles H. Wheeler,et al.  Steady point vortex pair in a field of Stuart-type vorticity , 2019, Journal of Fluid Mechanics.

[7]  N. Kudryashov,et al.  Vortices and polynomials: non-uniqueness of the Adler–Moser polynomials for the Tkachenko equation , 2011, 1112.4350.

[8]  P. Clarkson Vortices and Polynomials , 2008, 0901.0139.

[9]  A. Ionescu,et al.  Axi‐symmetrization near Point Vortex Solutions for the 2D Euler Equation , 2019, Communications on Pure and Applied Mathematics.

[10]  Stuart vortices on a hyperbolic sphere , 2020 .

[11]  S. Maslowe,et al.  A row of counter-rotating vortices , 1993 .

[12]  P. Saffman,et al.  Dynamics of vorticity , 1981, Journal of Fluid Mechanics.

[13]  Jürgen Moser,et al.  On a class of polynomials connected with the Korteweg-deVries equation , 1978 .

[14]  Darren Crowdy,et al.  Analytical solutions for rotating vortex arrays involving multiple vortex patches , 2005, Journal of Fluid Mechanics.

[15]  D. Crowdy,et al.  The effect of core size on the speed of compressible hollow vortex streets , 2017, Journal of Fluid Mechanics.

[16]  J. L. Burchnall,et al.  A Set of Differential Equations which can be Solved by Polynomials , 1930 .

[17]  P. Newton The N-Vortex Problem: Analytical Techniques , 2001 .

[18]  D. Crowdy Point vortex motion on the surface of a sphere with impenetrable boundaries , 2006 .

[19]  S. Richardson Vortices, Liouville's equation and the Bergman kernel function , 1980 .

[20]  Juncheng Wei,et al.  Convergence for a Liouville equation , 2001 .

[21]  D. Crowdy General solutions to the 2D Liouville equation , 1997 .

[22]  K. O'Neil Minimal polynomial systems for point vortex equilibria , 2006 .

[23]  G. K. Morikawa,et al.  Interacting Motion of Rectilinear Geostrophic Vortices , 1969 .

[24]  H. Helmholtz Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen. , 1858 .

[25]  Darryl D. Holm,et al.  Nonlinear stability of the Kelvin-Stuart cat's eyes flow , 1986 .

[26]  L. Fraenkel On Kelvin–Stuart vortices in a viscous fluid , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[27]  T. Bartsch,et al.  Erratum to: N-Vortex Equilibria for Ideal Fluids in Bounded Planar Domains and New Nodal Solutions of the sinh-Poisson and the Lane-Emden-Fowler Equations , 2010 .

[28]  D. Crowdy,et al.  Speed of a von Kármán point vortex street in a weakly compressible fluid , 2017 .

[29]  Christopher C. Green,et al.  Analytical solutions for von Kármán streets of hollow vortices , 2011 .

[30]  P. Newton,et al.  Particle dynamics in a viscously decaying cat’s eye: The effect of finite Schmidt numbers , 1991 .

[31]  Miles H. Wheeler,et al.  Stuart-type polar vortices on a rotating sphere , 2021, Discrete & Continuous Dynamical Systems - A.

[32]  J. T. Stuart On finite amplitude oscillations in laminar mixing layers , 1967, Journal of Fluid Mechanics.

[33]  A. Constantin,et al.  Stuart-type vortices on a rotating sphere , 2019, Journal of Fluid Mechanics.

[34]  K. O'Neil,et al.  Generalized Adler-Moser and Loutsenko polynomials for point vortex equilibria , 2014 .

[35]  Igor Loutsenko Equilibrium of charges and differential equations solved by polynomials , 2003, math-ph/0304008.

[36]  S. Friedlander Lectures on Stability and Instability of an Ideal Fluid , 1999 .

[37]  Some classes of two-dimensional vortex flows of an ideal fluid , 1989 .

[38]  D. Crowdy Exact solutions for rotating vortex arrays with finite-area cores , 2002, Journal of Fluid Mechanics.

[39]  Sheila E. Widnall,et al.  The structure of organized vortices in a free shear layer , 1979, Journal of Fluid Mechanics.

[40]  T. Bartsch,et al.  N-Vortex Equilibria for Ideal Fluids in Bounded Planar Domains and New Nodal Solutions of the sinh-Poisson and the Lane-Emden-Fowler Equations , 2010 .

[41]  D. Crowdy A class of exact multipolar vortices , 1999 .

[42]  D. Crowdy Polygonal N-vortex arrays: A Stuart model , 2003 .

[43]  H. McKean,et al.  Rational and elliptic solutions of the korteweg‐de vries equation and a related many‐body problem , 1977 .

[44]  K. O'Neil Relative equilibria of point vortices and linear vortex sheets , 2018, Physics of Fluids.

[45]  K. O'Neil Dipole and Multipole Flows with Point Vortices and Vortex Sheets , 2018, Regular and Chaotic Dynamics.

[46]  Hassan Aref,et al.  Point vortex dynamics: A classical mathematics playground , 2007 .

[47]  P. Newton,et al.  Particle dynamics and mixing in a viscously decaying shear layer , 1991, Journal of Fluid Mechanics.

[48]  Miles H. Wheeler,et al.  A transformation between stationary point vortex equilibria , 2020, Proceedings of the Royal Society A.

[49]  A. Tur,et al.  Point vortices with a rational necklace: New exact stationary solutions of the two-dimensional Euler equation , 2004 .

[50]  D. Crowdy Stuart vortices on a sphere , 2003, Journal of Fluid Mechanics.

[51]  K. O'Neil Stationary configurations of point vortices , 1987 .

[52]  F. Grünbaum,et al.  Differential equations in the spectral parameter , 1986 .

[53]  H. Aref Relative equilibria of point vortices and the fundamental theorem of algebra , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[54]  D. W. Moore,et al.  On steady compressible flows with compact vorticity; the compressible Stuart vortex , 2000, Journal of Fluid Mechanics.

[55]  P. G. Drazin,et al.  Philip Drazin and Norman Riley: The Navier–Stokes equations : a classification of flows and exact solutions , 2011, Theoretical and Computational Fluid Dynamics.