Universes of Fuzzy Sets and Axiomatizations of Fuzzy Set Theory. Part II: Category Theoretic Approaches

For classical sets one has with the cumulative hierarchy of sets, with axiomatizations like the system ZF, and with the category SET of all sets and mappings standard approaches toward global universes of all sets.We discuss here the corresponding situation for fuzzy set theory. Our emphasis will be on various approaches toward (more or less naively formed) universes of fuzzy sets as well as on axiomatizations, and on categories of fuzzy sets.What we give is a (critical) survey of quite a lot of such approaches which have been offered in the last approximately 35 years.Part I was devoted to model based and to axiomatic approaches; the present Part II is devoted to category theoretic approaches.

[1]  Satoko Titani,et al.  Fuzzy logic and fuzzy set theory , 1992, Arch. Math. Log..

[2]  Satoko Titani,et al.  Intuitionistic fuzzy logic and intuitionistic fuzzy set theory , 1984, Journal of Symbolic Logic.

[3]  S. Lane,et al.  Sheaves In Geometry And Logic , 1992 .

[4]  Oswald Wyler,et al.  Fuzzy logic and categories of fuzzy sets , 1995 .

[5]  Ulrich Höhle GL-Quantales: Q-Valued Sets and Their Singletons , 1998, Stud Logica.

[6]  J. Goguen L-fuzzy sets , 1967 .

[7]  K. I. Rosenthal Quantales and their applications , 1990 .

[8]  Mamoru Shimoda Categorical Aspects of Heyting-valued Models for Intuitionistic Set Theory , 1981 .

[9]  D. Scott Identity and existence in intuitionistic logic , 1979 .

[10]  Denis Higgs,et al.  Injectivity in the Topos of Complete Heyting Algebra Valued Sets , 1984, Canadian Journal of Mathematics.

[11]  P. T. Johnstone TOPOSES AND LOCAL SET THEORIES: AN INTRODUCTION (Oxford Logic Guides 14) , 1990 .

[12]  J. C. Carrega Short communication: The categories Set H and Fuz H , 1983 .

[13]  Aleš Pultr,et al.  Fuzziness and Fuzzy Equality , 1984 .

[14]  Oswald Wyler,et al.  Lecture notes on Topoi and Quasitopoi , 1991 .

[15]  Lawrence Neff Stout,et al.  A survey of fuzzy set and topos theory , 1991 .

[16]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[17]  Andrew M. Pitts,et al.  Fuzzy sets do not form a topos , 1982 .

[18]  F W Lawvere,et al.  AN ELEMENTARY THEORY OF THE CATEGORY OF SETS. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[19]  S. Gottwald A Treatise on Many-Valued Logics , 2001 .

[20]  Ulrich Höhle Many-valued equalities and their representations , 2005 .

[21]  Joseph A. Goguen,et al.  Concept Representation in Natural and Artificial Languages: Axioms, Extensions and Applications for Fuzzy Sets , 1974, Int. J. Man Mach. Stud..

[22]  D. Ponasse Short communication: Some remarks on the category Fuz(H) of M. Eytan , 1983 .

[23]  U. Höhle Commutative, residuated 1—monoids , 1995 .

[24]  D. Scott,et al.  Sheaves and logic , 1979 .

[25]  U. Höhle,et al.  Classification of Extremal Subobjects of Algebras Over SM-SET , 1992 .

[26]  Lawrence Neff Stout,et al.  Topoi and categories of fuzzy sets , 1984 .

[27]  C. J. Mulvey,et al.  Quantales: Quantal sets , 1995 .

[28]  J. L. Bell Some aspects of the category of subobjects of constant objects in a topos , 1982 .

[29]  Petr Hájek,et al.  Fuzzy Logics with Noncommutative Conjuctions , 2003, J. Log. Comput..

[30]  R. Mesiar,et al.  Logical, algebraic, analytic, and probabilistic aspects of triangular norms , 2005 .

[31]  Siegfried Gottwald Universes of Fuzzy Sets and Axiomatizations of Fuzzy Set Theory. Part I: Model-Based and Axiomatic Approaches , 2006, Stud Logica.

[32]  Vilém Novák,et al.  Topoi and Categories of Fuzzy Sets , 1999 .

[33]  U. Höhle Presheaves over GL-monoids , 1995 .

[34]  U. Höhle M-valued Sets and Sheaves over Integral Commutative CL-Monoids , 1992 .

[35]  R. Gylys,et al.  Quantal sets and sheaves over quantales , 1994 .

[36]  M. Barr,et al.  Toposes, Triples and Theories , 1984 .

[37]  L. N. Stout,et al.  Foundations of fuzzy sets , 1991 .

[38]  M. Fourman The Logic of Topoi , 1977 .

[39]  Lawrence N. Stout,et al.  Categories of Fuzzy Sets with Values in a Quantale or Projectale , 1995 .

[40]  Ulrich Höhle,et al.  Non-classical logics and their applications to fuzzy subsets : a handbook of the mathematical foundations of fuzzy set theory , 1995 .

[41]  Sally Popkorn,et al.  A Handbook of Categorical Algebra , 2009 .

[42]  M. Eytan,et al.  Fuzzy sets: A topos-logical point of view , 1981 .

[43]  H. Keisler,et al.  Handbook of mathematical logic , 1977 .