Universes of Fuzzy Sets and Axiomatizations of Fuzzy Set Theory. Part II: Category Theoretic Approaches
暂无分享,去创建一个
[1] Satoko Titani,et al. Fuzzy logic and fuzzy set theory , 1992, Arch. Math. Log..
[2] Satoko Titani,et al. Intuitionistic fuzzy logic and intuitionistic fuzzy set theory , 1984, Journal of Symbolic Logic.
[3] S. Lane,et al. Sheaves In Geometry And Logic , 1992 .
[4] Oswald Wyler,et al. Fuzzy logic and categories of fuzzy sets , 1995 .
[5] Ulrich Höhle. GL-Quantales: Q-Valued Sets and Their Singletons , 1998, Stud Logica.
[6] J. Goguen. L-fuzzy sets , 1967 .
[7] K. I. Rosenthal. Quantales and their applications , 1990 .
[8] Mamoru Shimoda. Categorical Aspects of Heyting-valued Models for Intuitionistic Set Theory , 1981 .
[9] D. Scott. Identity and existence in intuitionistic logic , 1979 .
[10] Denis Higgs,et al. Injectivity in the Topos of Complete Heyting Algebra Valued Sets , 1984, Canadian Journal of Mathematics.
[11] P. T. Johnstone. TOPOSES AND LOCAL SET THEORIES: AN INTRODUCTION (Oxford Logic Guides 14) , 1990 .
[12] J. C. Carrega. Short communication: The categories Set H and Fuz H , 1983 .
[13] Aleš Pultr,et al. Fuzziness and Fuzzy Equality , 1984 .
[14] Oswald Wyler,et al. Lecture notes on Topoi and Quasitopoi , 1991 .
[15] Lawrence Neff Stout,et al. A survey of fuzzy set and topos theory , 1991 .
[16] Petr Hájek,et al. Metamathematics of Fuzzy Logic , 1998, Trends in Logic.
[17] Andrew M. Pitts,et al. Fuzzy sets do not form a topos , 1982 .
[18] F W Lawvere,et al. AN ELEMENTARY THEORY OF THE CATEGORY OF SETS. , 1964, Proceedings of the National Academy of Sciences of the United States of America.
[19] S. Gottwald. A Treatise on Many-Valued Logics , 2001 .
[20] Ulrich Höhle. Many-valued equalities and their representations , 2005 .
[21] Joseph A. Goguen,et al. Concept Representation in Natural and Artificial Languages: Axioms, Extensions and Applications for Fuzzy Sets , 1974, Int. J. Man Mach. Stud..
[22] D. Ponasse. Short communication: Some remarks on the category Fuz(H) of M. Eytan , 1983 .
[23] U. Höhle. Commutative, residuated 1—monoids , 1995 .
[24] D. Scott,et al. Sheaves and logic , 1979 .
[25] U. Höhle,et al. Classification of Extremal Subobjects of Algebras Over SM-SET , 1992 .
[26] Lawrence Neff Stout,et al. Topoi and categories of fuzzy sets , 1984 .
[27] C. J. Mulvey,et al. Quantales: Quantal sets , 1995 .
[28] J. L. Bell. Some aspects of the category of subobjects of constant objects in a topos , 1982 .
[29] Petr Hájek,et al. Fuzzy Logics with Noncommutative Conjuctions , 2003, J. Log. Comput..
[30] R. Mesiar,et al. Logical, algebraic, analytic, and probabilistic aspects of triangular norms , 2005 .
[31] Siegfried Gottwald. Universes of Fuzzy Sets and Axiomatizations of Fuzzy Set Theory. Part I: Model-Based and Axiomatic Approaches , 2006, Stud Logica.
[32] Vilém Novák,et al. Topoi and Categories of Fuzzy Sets , 1999 .
[33] U. Höhle. Presheaves over GL-monoids , 1995 .
[34] U. Höhle. M-valued Sets and Sheaves over Integral Commutative CL-Monoids , 1992 .
[35] R. Gylys,et al. Quantal sets and sheaves over quantales , 1994 .
[36] M. Barr,et al. Toposes, Triples and Theories , 1984 .
[37] L. N. Stout,et al. Foundations of fuzzy sets , 1991 .
[38] M. Fourman. The Logic of Topoi , 1977 .
[39] Lawrence N. Stout,et al. Categories of Fuzzy Sets with Values in a Quantale or Projectale , 1995 .
[40] Ulrich Höhle,et al. Non-classical logics and their applications to fuzzy subsets : a handbook of the mathematical foundations of fuzzy set theory , 1995 .
[41] Sally Popkorn,et al. A Handbook of Categorical Algebra , 2009 .
[42] M. Eytan,et al. Fuzzy sets: A topos-logical point of view , 1981 .
[43] H. Keisler,et al. Handbook of mathematical logic , 1977 .