Quantum annealing speedup of embedded problems via suppression of Griffiths singularities
暂无分享,去创建一个
[1] P. Zoller,et al. Dynamics of a quantum phase transition. , 2005, Physical review letters.
[2] M. W. Johnson,et al. Phase transitions in a programmable quantum spin glass simulator , 2018, Science.
[3] J. Ros,et al. High Order Optimized Geometric Integrators for Linear Differential Equations , 2002 .
[4] Andrew Lucas,et al. Ising formulations of many NP problems , 2013, Front. Physics.
[5] Vicky Choi,et al. Minor-embedding in adiabatic quantum computation: I. The parameter setting problem , 2008, Quantum Inf. Process..
[6] Fernando Casas,et al. Improved High Order Integrators Based on the Magnus Expansion , 2000 .
[7] Daniel A. Lidar,et al. Error-corrected quantum annealing with hundreds of qubits , 2013, Nature Communications.
[8] Daniel A. Lidar,et al. Finite temperature quantum annealing solving exponentially small gap problem with non-monotonic success probability , 2018, Nature Communications.
[9] Daniel A. Lidar,et al. Quantum-annealing correction at finite temperature: Ferromagnetic p -spin models , 2016, 1610.09535.
[10] E. Fradkin,et al. Field Theories of Condensed Matter Physics , 2013 .
[11] Robert B. Griffiths,et al. Nonanalytic Behavior Above the Critical Point in a Random Ising Ferromagnet , 1969 .
[12] E. Farhi,et al. A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.
[13] Jacek Dziarmaga,et al. Dynamics of a quantum phase transition: exact solution of the quantum Ising model. , 2005, Physical review letters.
[14] Fisher,et al. Critical behavior of random transverse-field Ising spin chains. , 1995, Physical review. B, Condensed matter.
[15] S. Knysh,et al. Quantum Annealing via Environment-Mediated Quantum Diffusion. , 2015, Physical review letters.
[16] B. McCoy. Incompleteness of the Critical Exponent Description for Ferromagnetic Systems Containing Random Impurities , 1969 .
[17] Kurunathan Ratnavelu,et al. FRONTIERS IN PHYSICS , 2009 .
[18] J. Dormand,et al. A family of embedded Runge-Kutta formulae , 1980 .
[19] Daniel A. Lidar,et al. Adiabatic quantum computation , 2016, 1611.04471.
[20] Randall D. Kamien,et al. Reviews of Modern Physics at 90 , 2019, Physics Today.
[21] G. Santoro,et al. Dynamics of simulated quantum annealing in random Ising chains , 2018, Physical Review B.
[22] H. Nishimori,et al. Quantum annealing in the transverse Ising model , 1998, cond-mat/9804280.
[23] B. Chakrabarti,et al. Colloquium : Quantum annealing and analog quantum computation , 2008, 0801.2193.
[24] J. Dziarmaga. Dynamics of a quantum phase transition in the random Ising model: Logarithmic dependence of the defe , 2006, cond-mat/0603814.
[25] Rosario Fazio,et al. Adiabatic quantum dynamics of a random Ising chain across its quantum critical point , 2007, 0706.1832.
[26] Daniel A. Lidar,et al. Quantum annealing correction with minor embedding , 2015, 1507.02658.
[27] S. Knysh,et al. Zero-temperature quantum annealing bottlenecks in the spin-glass phase , 2016, Nature Communications.
[28] S. Knysh,et al. Quantum Optimization of Fully-Connected Spin Glasses , 2014, 1406.7553.
[29] Daniel A. Lidar,et al. Quantum annealing correction for random Ising problems , 2014, 1408.4382.
[30] M. Mohseni,et al. Inhomogeneous quasi-adiabatic driving of quantum critical dynamics in weakly disordered spin chains , 2016, 1606.07740.
[31] Fisher,et al. Random transverse field Ising spin chains. , 1992, Physical review letters.
[32] Yan-Long Fang,et al. Minimizing minor embedding energy: an application in quantum annealing , 2019, Quantum Information Processing.
[34] Vicky Choi,et al. Minor-embedding in adiabatic quantum computation: II. Minor-universal graph design , 2010, Quantum Inf. Process..