Quantum annealing speedup of embedded problems via suppression of Griffiths singularities

Optimal parameter setting for applications problems embedded into hardware graphs is key to practical quantum annealers (QA). Embedding chains typically crop up as harmful Griffiths phases, but can be used as a resource as we show here: to balance out singularities in the logical problem changing its universality class. Smart choice of embedding parameters reduces annealing times for random Ising chain from $O(exp[c\sqrt N])$ to $O(N^2)$. Dramatic reduction in time-to-solution for QA is confirmed by numerics, for which we developed a custom integrator to overcome convergence issues.

[1]  P. Zoller,et al.  Dynamics of a quantum phase transition. , 2005, Physical review letters.

[2]  M. W. Johnson,et al.  Phase transitions in a programmable quantum spin glass simulator , 2018, Science.

[3]  J. Ros,et al.  High Order Optimized Geometric Integrators for Linear Differential Equations , 2002 .

[4]  Andrew Lucas,et al.  Ising formulations of many NP problems , 2013, Front. Physics.

[5]  Vicky Choi,et al.  Minor-embedding in adiabatic quantum computation: I. The parameter setting problem , 2008, Quantum Inf. Process..

[6]  Fernando Casas,et al.  Improved High Order Integrators Based on the Magnus Expansion , 2000 .

[7]  Daniel A. Lidar,et al.  Error-corrected quantum annealing with hundreds of qubits , 2013, Nature Communications.

[8]  Daniel A. Lidar,et al.  Finite temperature quantum annealing solving exponentially small gap problem with non-monotonic success probability , 2018, Nature Communications.

[9]  Daniel A. Lidar,et al.  Quantum-annealing correction at finite temperature: Ferromagnetic p -spin models , 2016, 1610.09535.

[10]  E. Fradkin,et al.  Field Theories of Condensed Matter Physics , 2013 .

[11]  Robert B. Griffiths,et al.  Nonanalytic Behavior Above the Critical Point in a Random Ising Ferromagnet , 1969 .

[12]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[13]  Jacek Dziarmaga,et al.  Dynamics of a quantum phase transition: exact solution of the quantum Ising model. , 2005, Physical review letters.

[14]  Fisher,et al.  Critical behavior of random transverse-field Ising spin chains. , 1995, Physical review. B, Condensed matter.

[15]  S. Knysh,et al.  Quantum Annealing via Environment-Mediated Quantum Diffusion. , 2015, Physical review letters.

[16]  B. McCoy Incompleteness of the Critical Exponent Description for Ferromagnetic Systems Containing Random Impurities , 1969 .

[17]  Kurunathan Ratnavelu,et al.  FRONTIERS IN PHYSICS , 2009 .

[18]  J. Dormand,et al.  A family of embedded Runge-Kutta formulae , 1980 .

[19]  Daniel A. Lidar,et al.  Adiabatic quantum computation , 2016, 1611.04471.

[20]  Randall D. Kamien,et al.  Reviews of Modern Physics at 90 , 2019, Physics Today.

[21]  G. Santoro,et al.  Dynamics of simulated quantum annealing in random Ising chains , 2018, Physical Review B.

[22]  H. Nishimori,et al.  Quantum annealing in the transverse Ising model , 1998, cond-mat/9804280.

[23]  B. Chakrabarti,et al.  Colloquium : Quantum annealing and analog quantum computation , 2008, 0801.2193.

[24]  J. Dziarmaga Dynamics of a quantum phase transition in the random Ising model: Logarithmic dependence of the defe , 2006, cond-mat/0603814.

[25]  Rosario Fazio,et al.  Adiabatic quantum dynamics of a random Ising chain across its quantum critical point , 2007, 0706.1832.

[26]  Daniel A. Lidar,et al.  Quantum annealing correction with minor embedding , 2015, 1507.02658.

[27]  S. Knysh,et al.  Zero-temperature quantum annealing bottlenecks in the spin-glass phase , 2016, Nature Communications.

[28]  S. Knysh,et al.  Quantum Optimization of Fully-Connected Spin Glasses , 2014, 1406.7553.

[29]  Daniel A. Lidar,et al.  Quantum annealing correction for random Ising problems , 2014, 1408.4382.

[30]  M. Mohseni,et al.  Inhomogeneous quasi-adiabatic driving of quantum critical dynamics in weakly disordered spin chains , 2016, 1606.07740.

[31]  Fisher,et al.  Random transverse field Ising spin chains. , 1992, Physical review letters.

[32]  Yan-Long Fang,et al.  Minimizing minor embedding energy: an application in quantum annealing , 2019, Quantum Information Processing.

[34]  Vicky Choi,et al.  Minor-embedding in adiabatic quantum computation: II. Minor-universal graph design , 2010, Quantum Inf. Process..