Multiplicative algorithms for computing optimum designs

We study a new approach to determine optimal designs, exact or approximate, both for the uncorrelated case and when the responses may be correlated. A simple version of this method is based on transforming design points on a finite interval to proportions of the interval. Methods for determining optimal design weights can therefore be used to determine optimal values of these proportions. We explore the potential of this method in a range of examples encompassing linear and non-linear models, some assuming a correlation structure and some with more than one design variable.

[1]  A. Atkinson,et al.  Optimum design: 2000 , 2001 .

[2]  Toby J. Mitchell,et al.  An algorithm for the construction of “ D -optimal” experimental designs , 2000 .

[3]  A. Atkinson,et al.  The design of experiments for discriminating between two rival models , 1975 .

[4]  Saumen Mandal,et al.  Construction of optimal designs using a clustering approach , 2006 .

[5]  B. Torsney A Moment Inequality and Monotonicity of an Algorithm , 1983 .

[6]  E. Ziegel Optimal design and analysis of experiments , 1990 .

[7]  Anthony C. Atkinson,et al.  Experimental Design for Time-Dependent Models with Correlated Observations , 2004 .

[8]  S. Mandal,et al.  Two classes of multiplicative algorithms for constructing optimizing distributions , 2006, Comput. Stat. Data Anal..

[9]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[10]  Licesio J. Rodríguez-Aragón,et al.  T-, D- and c-optimum designs for BET and GAB adsorption isotherms , 2007 .

[11]  J. López-Fidalgo,et al.  Marginally restricted D-optimal designs for correlated observations , 2008 .

[12]  P. Whittle Some General Points in the Theory of Optimal Experimental Design , 1973 .

[13]  H. Wynn,et al.  The Convergence of General Step-Length Algorithms for Regular Optimum Design Criteria , 1978 .

[14]  Ben Torsney,et al.  W-Iterations and Ripples Therefrom , 2009 .

[15]  S. Silvey,et al.  An algorithm for optimal designs on a design space , 1978 .

[16]  Anthony C. Atkinson,et al.  Optimum Experimental Designs, with SAS , 2007 .

[17]  Anthony C. Atkinson,et al.  Optimum Dose Levels when Males and Females Differ in Response , 1995 .

[18]  H. Wynn The Sequential Generation of $D$-Optimum Experimental Designs , 1970 .

[19]  Changbao Wu,et al.  Some iterative procedures for generating nonsingular optimal designs , 1978 .

[20]  Andrej Pázman,et al.  An algorithm for the computation of optimum designs under a given covariance structure , 1999, Comput. Stat..

[21]  Rainer Schwabe,et al.  Optimum Designs for Multi-Factor Models , 1996 .

[22]  Ben Torsney,et al.  Construction of Constrained Optimal Designs , 2001 .

[23]  M. Olazar,et al.  Water sorption isotherms of roasted coffee and coffee roasted with sugar , 1999 .

[24]  S. Silvey,et al.  A geometric approach to optimal design theory , 1973 .

[25]  J. M. Rodríguez-Díaz,et al.  Optimal allocation of bioassays in the case of parametrized covariance functions: an application to Lung’s retention of radioactive particles , 2008 .

[26]  Saumen Mandal,et al.  Multiplicative Algorithms for Constructing Optimizing Distributions : Further Developments , 2004 .

[27]  H. Wynn Results in the Theory and Construction of D‐Optimum Experimental Designs , 1972 .

[28]  R. D. Cook,et al.  A Comparison of Algorithms for Constructing Exact D-Optimal Designs , 1980 .

[29]  A. Atkinson,et al.  Optimal design : Experiments for discriminating between several models , 1975 .

[30]  I. Ford,et al.  The Use of a Canonical Form in the Construction of Locally Optimal Designs for Non‐Linear Problems , 1992 .

[31]  C. Boned,et al.  Volumetric Properties of 1-Phenyldecane and 1-Phenylundecane at Pressures to 65 MPa and Temperature between 293.15 and 353.15 K , 2005 .

[32]  Anthony C. Atkinson,et al.  The construction of exact D optimum wxperimental designs with application to blocking response surface designs , 1989 .

[33]  Holger Dette,et al.  Improving updating rules in multiplicative algorithms for computing D-optimal designs , 2008, Comput. Stat. Data Anal..

[34]  R. K. Meyer,et al.  The Coordinate-Exchange Algorithm for Constructing Exact Optimal Experimental Designs , 1995 .

[35]  J. Kiefer,et al.  THE ROLE OF SYMMETRY AND APPROXIMATION IN EXACT DESIGN OPTIMALITY , 1971 .

[36]  J. Kiefer General Equivalence Theory for Optimum Designs (Approximate Theory) , 1974 .

[37]  S. Gupta,et al.  Statistical decision theory and related topics IV , 1988 .

[38]  A. Laesecke,et al.  Measurements of Density and Speed of Sound of JP-10 and a Comparison to Rocket Propellants and Jet Fuels , 2011 .

[39]  Luc Pronzato,et al.  Removing non-optimal support points in D-optimum design algorithms , 2003 .

[40]  L. Haines The application of the annealing algorithm to the construction of exact optimal designs for linear-regression models , 1987 .

[41]  W. J. Studden,et al.  Theory Of Optimal Experiments , 1972 .

[42]  H. L. Lucas,et al.  DESIGN OF EXPERIMENTS IN NON-LINEAR SITUATIONS , 1959 .

[43]  B. Torsneya,et al.  Multiplicative algorithms for computing optimum designs , 2009 .

[44]  M. Stehlík Some Properties of Exchange Design Algorithms Under Correlation , 2006 .

[45]  J. López-Fidalgo,et al.  Construction of marginally and conditionally restricted designs using multiplicative algorithms , 2007, Comput. Stat. Data Anal..

[46]  Luc Pronzato,et al.  Improvements on removing nonoptimal support points in D-optimum design algorithms , 2007, 0706.4394.