Simultaneously Broadband and Back-Off Efficient mm-Wave PAs: A Multi-Port Network Synthesis Approach

Spectrally efficient operation with high power and high efficiency at deep backoff will be critical for the next generation of millimeter-wave (mm-wave) transmitters for 5G and beyond. In addition, as larger non-contiguous chunks of the mm-wave spectrum open up, dynamic frequency reconfiguration while ensuring high spectral and energy efficiency can become a key toward optimal utilization of spectral resources. In this paper, we present a generalized network synthesis approach that enables simultaneous frequency and back-off reconfigurability in an mm-wave power amplifier (PA) architecture to maintain high-efficiency operation with spectrally efficient codes across a wide frequency range. We show that frequency reconfigurability and back-off enhancement can be treated in a similar fashion with dynamic impedance synthesis. The method is based on the synthesis of a multi-port combiner network that exploits the interaction of mm-wave DAC cells switched asymmetrically to synthesize the optimal impedances across the 2-D space of reconfiguration: frequency and backoff. As a proof of concept, a PA is presented in <inline-formula> <tex-math notation="LaTeX">$0.13-\mu \text{m}$ </tex-math></inline-formula> SiGe BiCMOS process, which operates across 30–55 GHz with peak <inline-formula> <tex-math notation="LaTeX">$P_{\mathrm{ sat}}$ </tex-math></inline-formula> of 23.7 dBm at 40 GHz, output collector efficiency <inline-formula> <tex-math notation="LaTeX">$\eta _{\text {out}}$ </tex-math></inline-formula> of 34.5% and 22% at the 0- and −6-dB backoff, respectively. The PA maintains <inline-formula> <tex-math notation="LaTeX">$\eta _{\text {out}} > 16\%$ </tex-math></inline-formula> at −6-dB backoff across the range. Non-constant modulation is demonstrated with data rates up to 4 Gb/s across the frequencies from 30 to 50 GHz.

[1]  Chorng-Kuang Wang,et al.  A 1V 19.3dBm 79GHz power amplifier in 65nm CMOS , 2012, 2012 IEEE International Solid-State Circuits Conference.

[2]  Peter M. Asbeck,et al.  Active Millimeter-Wave Phase-Shift Doherty Power Amplifier in 45-nm SOI CMOS , 2013, IEEE Journal of Solid-State Circuits.

[3]  Hua Wang,et al.  Design of A Transformer-Based Reconfigurable Digital Polar Doherty Power Amplifier Fully Integrated in Bulk CMOS , 2015, IEEE Journal of Solid-State Circuits.

[4]  Christian Fager,et al.  A 1–3-GHz Digitally Controlled Dual-RF Input Power-Amplifier Design Based on a Doherty-Outphasing Continuum Analysis , 2013, IEEE Transactions on Microwave Theory and Techniques.

[5]  Patrick Reynaert,et al.  A 32 GHz 20 dBm-PSAT transformer-based Doherty power amplifier for multi-Gb/s 5G applications in 28 nm bulk CMOS , 2017, 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[6]  James F. Buckwalter,et al.  A PMOS mm-wave power amplifier at 77 GHz with 90 mW output power and 24% efficiency , 2016, 2016 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[7]  Lawrence Larson,et al.  A 45GHz Doherty power amplifier with 23% PAE and 18dBm output power, in 45nm SOI CMOS , 2012, 2012 IEEE/MTT-S International Microwave Symposium Digest.

[8]  Patrick Reynaert,et al.  An E-Band Power Amplifier With Broadband Parallel-Series Power Combiner in 40-nm CMOS , 2015, IEEE Transactions on Microwave Theory and Techniques.

[9]  Peter Asbeck,et al.  High-power, high-efficiency digital polar doherty power amplifier for cellular applications in SOI CMOS , 2016, 2016 IEEE Topical Conference on Power Amplifiers for Wireless and Radio Applications (PAWR).

[10]  Peter M. Asbeck,et al.  Analysis and Design of Stacked-FET Millimeter-Wave Power Amplifiers , 2013, IEEE Transactions on Microwave Theory and Techniques.

[11]  Kaushik Sengupta,et al.  A W-band SiGe power amplifier with Psat of 23 dBm and PAE of 16.8% at 95GHz , 2017, 2017 IEEE MTT-S International Microwave Symposium (IMS).

[12]  Chandrakanth Reddy Chappidi,et al.  Globally Optimal Matching Networks With Lossy Passives and Efficiency Bounds , 2018, IEEE Transactions on Circuits and Systems I: Regular Papers.

[13]  Gabriel M. Rebeiz,et al.  A 110–134-GHz SiGe Amplifier With Peak Output Power of 100–120 mW , 2014, IEEE Transactions on Microwave Theory and Techniques.

[14]  S. C. Cripps,et al.  RF Power Amplifiers for Wireless Communications , 1999 .

[15]  Kaushik Sengupta,et al.  RF and mm-Wave Power Generation in Silicon , 2015 .

[16]  Theodore S. Rappaport,et al.  Millimeter Wave Mobile Communications for 5G Cellular: It Will Work! , 2013, IEEE Access.

[17]  John R. Long,et al.  A 58–65 GHz Neutralized CMOS Power Amplifier With PAE Above 10% at 1-V Supply , 2010, IEEE Journal of Solid-State Circuits.

[18]  Huei Wang,et al.  A 90-GHz power amplifier with 18-dBm output power and 26 GHz 3-dB bandwidth in standard RF 65-nm CMOS technology , 2013, 2013 IEEE MTT-S International Microwave Symposium Digest (MTT).

[19]  Saeed Mohammadi,et al.  High-Efficiency Microwave and mm-Wave Stacked Cell CMOS SOI Power Amplifiers , 2016, IEEE Transactions on Microwave Theory and Techniques.

[20]  Elham Rahimi,et al.  2.6 A SiGe BiCMOS E-band power amplifier with 22% PAE at 18dBm OP1dB and 8.5% at 6dB back-off leveraging current clamping in a common-base stage , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).

[21]  Kaushik Sengupta,et al.  A digital mm-Wave PA architecture with Simultaneous Frequency and back-off Reconfigurability , 2017, 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[22]  Patrick Reynaert,et al.  A 60-GHz Dual-Mode Class AB Power Amplifier in 40-nm CMOS , 2013, IEEE Journal of Solid-State Circuits.

[23]  Harish Krishnaswamy,et al.  Large-scale power-combining and linearization in watt-class mmWave CMOS power amplifiers , 2013, 2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[24]  Hossein Hashemi,et al.  Performance Limits, Design and Implementation of mm-Wave SiGe HBT Class-E and Stacked Class-E Power Amplifiers , 2014, IEEE Journal of Solid-State Circuits.

[25]  David S. Ricketts,et al.  A compact, 36 to 72 GHz 15.8 dBm power amplifier with 66.7% fractional bandwidth in 45 nm SOI CMOS , 2014 .

[26]  Sorin P. Voinigescu,et al.  A 19-dBm, 15-Gbaud, 9-bit SOI CMOS power-DAC cell for high-order QAM W-band transmitters , 2013 .

[27]  Marco Vigilante,et al.  A 29-to-57GHz AM-PM compensated class-AB power amplifier for 5G phased arrays in 0.9V 28nm bulk CMOS , 2017, 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[28]  G. Matthaei Tables of Chebyshev impedance–transforming networks of low-pass filter form , 1964 .

[29]  Andrea Bevilacqua,et al.  A 40–67 GHz Power Amplifier With 13 dBm ${\rm P}_{\rm SAT}$ and 16% PAE in 28 nm CMOS LP , 2015, IEEE Journal of Solid-State Circuits.

[30]  Andrea Bevilacqua,et al.  A 40–67GHz power amplifier with 13dBm PSAT and 16% PAE in 28 nm CMOS LP , 2014, ESSCIRC 2014 - 40th European Solid State Circuits Conference (ESSCIRC).

[31]  Fei Wang,et al.  2.1 A 28GHz/37GHz/39GHz multiband linear Doherty power amplifier for 5G massive MIMO applications , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).

[32]  Kaushik Sengupta,et al.  Methods for finding globally maximum-efficiency impedance matching networks with lossy passives , 2015, 2015 IEEE Custom Integrated Circuits Conference (CICC).

[33]  Christian Fager,et al.  Doherty's Legacy: A History of the Doherty Power Amplifier from 1936 to the Present Day , 2016, IEEE Microwave Magazine.

[34]  Gabriel M. Rebeiz,et al.  A 70–80-GHz SiGe Amplifier With Peak Output Power of 27.3 dBm , 2016, IEEE Transactions on Microwave Theory and Techniques.

[35]  Patrick Reynaert,et al.  Transformer-Based Doherty Power Amplifiers for mm-Wave Applications in 40-nm CMOS , 2015, IEEE Transactions on Microwave Theory and Techniques.

[36]  Kaushik Sengupta,et al.  20.2 A frequency-reconfigurable mm-Wave power amplifier with active-impedance synthesis in an asymmetrical non-isolated combiner , 2016, 2016 IEEE International Solid-State Circuits Conference (ISSCC).

[37]  A. Hajimiri,et al.  Integrated Self-Healing for mm-Wave Power Amplifiers , 2013, IEEE Transactions on Microwave Theory and Techniques.

[38]  Ali Hajimiri,et al.  Distributed active transformer-a new power-combining and impedance-transformation technique , 2002 .

[39]  Kaushik Sengupta,et al.  A mm-Wave Segmented Power Mixer , 2015, IEEE Transactions on Microwave Theory and Techniques.