Pore-forming activity and structural autoinhibition of the gasdermin family

[1]  B. Stockwell,et al.  Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease , 2017, Cell.

[2]  Ben M. Webb,et al.  Comparative Protein Structure Modeling Using MODELLER , 2016, Current protocols in bioinformatics.

[3]  Cyril F. Reboul,et al.  Giant MACPF/CDC pore forming toxins: A class of their own. , 2016, Biochimica et biophysica acta.

[4]  F. Shao,et al.  Diverse mechanisms for inflammasome sensing of cytosolic bacteria and bacterial virulence. , 2016, Current opinion in microbiology.

[5]  E. Vizi,et al.  Hypervulnerability to Sound Exposure through Impaired Adaptive Proliferation of Peroxisomes , 2015, Cell.

[6]  S. Kummerfeld,et al.  Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling , 2015, Nature.

[7]  T. Cai,et al.  Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death , 2015, Nature.

[8]  J. Winderickx,et al.  The deafness gene DFNA5 induces programmed cell death through mitochondria and MAPK-related pathways , 2015, Front. Cell. Neurosci..

[9]  E. Miao,et al.  Pyroptotic cell death defends against intracellular pathogens , 2015, Immunological reviews.

[10]  F. Shao,et al.  Non-canonical activation of inflammatory caspases by cytosolic LPS in innate immunity. , 2015, Current opinion in immunology.

[11]  W. Alexander,et al.  Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death , 2014, Proceedings of the National Academy of Sciences.

[12]  P. Li,et al.  Inflammatory caspases are innate immune receptors for intracellular LPS , 2014, Nature.

[13]  M. Bertrand,et al.  MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. , 2014, Cell reports.

[14]  Vishva M. Dixit,et al.  Mechanisms and Functions of Inflammasomes , 2014, Cell.

[15]  Xiaodong Wang,et al.  Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. , 2014, Molecular cell.

[16]  Ling-gang Wu,et al.  Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis , 2013, Nature Cell Biology.

[17]  Masaru Tamura,et al.  Functional Conservation of Gsdma Cluster Genes Specifically Duplicated in the Mouse Genome , 2013, G3: Genes, Genomes, Genetics.

[18]  D. Powell,et al.  Cytoplasmic LPS Activates Caspase-11: Implications in TLR4-Independent Endotoxic Shock , 2013, Science.

[19]  M. T. Wong,et al.  Noncanonical Inflammasome Activation by Intracellular LPS Independent of TLR4 , 2013, Science.

[20]  F. G. van der Goot,et al.  Pathogenic pore-forming proteins: function and host response. , 2012, Cell Host and Microbe.

[21]  Sjors H.W. Scheres,et al.  A Bayesian View on Cryo-EM Structure Determination , 2012, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).

[22]  Jinfeng Liu,et al.  Non-canonical inflammasome activation targets caspase-11 , 2011, Nature.

[23]  Hao Xu,et al.  The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus , 2011, Nature.

[24]  Shan Li,et al.  Chemical probing reveals insights into the signaling mechanism of inflammasome activation , 2010, Cell Research.

[25]  Liisa Holm,et al.  Dali server: conservation mapping in 3D , 2010, Nucleic Acids Res..

[26]  Mirko Bischofberger,et al.  Structure and assembly of pore-forming proteins. , 2010, Current opinion in structural biology.

[27]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[28]  Vincent B. Chen,et al.  PHENIX: a comprehensive Python-based system for macromolecular structure solution , 2010, Acta crystallographica. Section D, Biological crystallography.

[29]  B. Cookson,et al.  Anthrax lethal toxin and Salmonella elicit the common cell death pathway of caspase-1-dependent pyroptosis via distinct mechanisms , 2008, Proceedings of the National Academy of Sciences.

[30]  A. Sali,et al.  Statistical potential for assessment and prediction of protein structures , 2006, Protein science : a publication of the Protein Society.

[31]  N. Ben-Tal,et al.  Mutations in the gene encoding pejvakin, a newly identified protein of the afferent auditory pathway, cause DFNB59 auditory neuropathy , 2006, Nature Genetics.

[32]  H. Fuchs,et al.  The dominant alopecia phenotypes Bareskin, Rex-denuded, and Reduced Coat 2 are caused by mutations in gasdermin 3. , 2004, Genomics.

[33]  E. Lane,et al.  Defolliculated (dfl): a dominant mouse mutation leading to poor sebaceous gland differentiation and total elimination of pelage follicles. , 2002, The Journal of investigative dermatology.

[34]  B. Cookson,et al.  Pro-inflammatory programmed cell death. , 2001, Trends in microbiology.

[35]  R. Tweten,et al.  The mechanism of pore assembly for a cholesterol-dependent cytolysin: formation of a large prepore complex precedes the insertion of the transmembrane beta-hairpins. , 2000, Biochemistry.

[36]  G. Richardson,et al.  Nonsyndromic hearing impairment is associated with a mutation in DFNA5 , 1998, Nature Genetics.

[37]  D. Papahadjopoulos,et al.  Ca2+-induced fusion of phospholipid vesicles monitored by mixing of aqueous contents , 1979, Nature.

[38]  H. Masuya,et al.  A new mutation Rim3 resembling Redenis mapped close to retinoic acid receptor alpha (Rara) gene on mouse Chromosome 11 , 2009, Mammalian Genome.

[39]  Wen Jiang,et al.  EMAN2: an extensible image processing suite for electron microscopy. , 2007, Journal of structural biology.

[40]  Bernhard Rupp,et al.  Correspondence e-mail: , 2000 .

[41]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[42]  A Leith,et al.  SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. , 1996, Journal of structural biology.

[43]  S. Colowick,et al.  Methods in Enzymology , Vol , 1966 .