Origins of Extreme Liquid Repellency on Structured, Flat, and Lubricated Hydrophobic Surfaces.

There are currently three main classes of liquid-repellent surfaces: micro- or nanostructured superhydrophobic surfaces, flat surfaces grafted with "liquidlike" polymer brushes, and lubricated surfaces. Despite recent progress, the mechanistic explanation for the differences in droplet behavior on such surfaces is still under debate. Here, we measure the dissipative force acting on a droplet moving on representatives of these surfaces at different velocities U=0.01-1  mm/s using a cantilever force sensor with submicronewton accuracy and correlate it to the contact line dynamics observed using optical interferometry at high spatial (micron) and temporal (<0.1  s) resolutions. We find that the dissipative force-due to very different physical mechanisms at the contact line-is independent of velocity on superhydrophobic surfaces but depends nonlinearly on velocity for flat and lubricated surfaces. The techniques and insights presented here will inform future work on liquid-repellent surfaces and enable their rational design.

[1]  T. Blake The physics of moving wetting lines. , 2006, Journal of colloid and interface science.

[2]  Doris Vollmer,et al.  How drops start sliding over solid surfaces , 2017, Nature Physics.

[3]  D. Quéré,et al.  Contact angle hysteresis generated by strong dilute defects. , 2009, The journal of physical chemistry. B.

[4]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[5]  Patrik Hoffmann,et al.  A Snake-Based Approach to Accurate Determination of Both Contact Points and Contact Angles , 2006 .

[6]  William K. Smith,et al.  ADAPTIVE RELATIONSHIP BETWEEN LEAF WATER REPELLENCY, STOMATAL DISTRIBUTION, AND GAS EXCHANGE , 1989 .

[7]  Doris Vollmer,et al.  How Water Advances on Superhydrophobic Surfaces. , 2016, Physical review letters.

[8]  Eric Lauga,et al.  A smooth future? , 2011, Nature materials.

[9]  A. Hozumi,et al.  A statically oleophilic but dynamically oleophobic smooth nonperfluorinated surface. , 2012, Angewandte Chemie.

[10]  J. Ralston,et al.  The molecular-kinetic theory of wetting , 1994 .

[11]  D. Bodas,et al.  Deposition of PTFE thin films by RF plasma sputtering on 〈100〉 silicon substrates , 2005 .

[12]  E. Bormashenko,et al.  On the nature of the friction between nonstick droplets and solid substrates. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[13]  David Quéré,et al.  Slippery pre-suffused surfaces , 2011 .

[14]  Olli Ikkala,et al.  Reliable measurement of the receding contact angle. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[15]  P. Bahadur,et al.  Measurement of lateral adhesion forces at the interface between a liquid drop and a substrate. , 2009, Physical review letters.

[16]  B. Widom Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves , 2003 .

[17]  A. Hozumi,et al.  Smooth, transparent and nonperfluorinated surfaces exhibiting unusual contact angle behavior toward organic liquids , 2012 .

[18]  T. J. McCarthy,et al.  Contact angle hysteresis: a different view and a trivial recipe for low hysteresis hydrophobic surfaces. , 2010, Faraday discussions.

[19]  C. Clanet,et al.  Dynamical superhydrophobicity. , 2010, Faraday discussions.

[20]  Periklis Papadopoulos,et al.  Energy Dissipation of Moving Drops on Superhydrophobic and Superoleophobic Surfaces. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[21]  D. Quéré,et al.  Drops at Rest on a Tilted Plane , 1998 .

[22]  K. Varanasi,et al.  Visualization of contact line motion on hydrophobic textures , 2013 .

[23]  Chem. , 2020, Catalysis from A to Z.

[24]  T. J. McCarthy,et al.  Covalently Attached Liquids: Instant Omniphobic Surfaces with Unprecedented Repellency. , 2016, Angewandte Chemie.

[25]  A. Hozumi,et al.  Self-lubricating organogels (SLUGs) with exceptional syneresis-induced anti-sticking properties against viscous emulsions and ices , 2015 .

[26]  A. Hozumi,et al.  Unusual dynamic dewetting behavior of smooth perfluorinated hybrid films: potential advantages over conventional textured and liquid-infused perfluorinated surfaces. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[27]  Dla Polski,et al.  EURO , 2004 .

[28]  E. Bormashenko Wetting of real solid surfaces: new glance on well-known problems , 2013, Colloid and Polymer Science.

[29]  D. Quéré,et al.  Viscous drops rolling on a tilted non-wettable solid , 1999 .

[30]  H. Butt,et al.  Direct observation of drops on slippery lubricant-infused surfaces. , 2015, Soft matter.

[31]  Gareth H. McKinley,et al.  Droplet mobility on lubricant-impregnated surfaces , 2013 .

[32]  Joanna Aizenberg,et al.  Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance. , 2012, ACS nano.

[33]  runden Tisch,et al.  AM , 2020, Catalysis from A to Z.

[34]  Lichao Gao,et al.  Contact angle hysteresis explained. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[35]  Jaakko V. I. Timonen,et al.  Oleoplaning droplets on lubricated surfaces , 2017, Nature Physics.

[36]  Lenore L. Dai,et al.  Dynamic wetting: hydrodynamic or molecular-kinetic? , 2005, Journal of colloid and interface science.

[37]  Н. Грейда,et al.  17 , 2019, Magical Realism for Non-Believers.

[38]  T. Darmanin,et al.  Superhydrophobic and superoleophobic properties in nature , 2015 .

[39]  Alexander K. Epstein,et al.  Fabrication of Bioinspired Actuated Nanostructures with Arbitrary Geometry and Stiffness , 2009 .

[40]  R. Cerbino Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves , 2006 .

[41]  Adv , 2019, International Journal of Pediatrics and Adolescent Medicine.

[42]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[43]  D. Quéré Wetting and Roughness , 2008 .

[44]  Samuel A. Assefa,et al.  SURF: improving classifiers in production by learning from busy and noisy end users , 2020, ICAIF.

[45]  Joanna Aizenberg,et al.  Dynamic polymer systems with self-regulated secretion for the control of surface properties and material healing. , 2015, Nature materials.

[46]  C. Extrand,et al.  Model for Contact Angles and Hysteresis on Rough and Ultraphobic Surfaces , 2002 .

[47]  Faraday Discuss , 1985 .

[48]  D. Ende,et al.  Air cushioning in droplet impact. I. Dynamics of thin films studied by dual wavelength reflection interference microscopy , 2015 .

[49]  G. McHale,et al.  Contact-angle hysteresis on super-hydrophobic surfaces. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[50]  Michael Newton,et al.  Progess in superhydrophobic surface development. , 2008, Soft matter.

[51]  C. Furmidge,et al.  Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and a theory for spray retention , 1962 .

[52]  Tolga Aytug,et al.  Superhydrophobic materials and coatings: a review , 2015, Reports on progress in physics. Physical Society.

[53]  G. McKinley,et al.  Assessing the accuracy of contact angle measurements for sessile drops on liquid-repellent surfaces. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[54]  Sindy K. Y. Tang,et al.  Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity , 2011, Nature.

[55]  Andrew G. Glen,et al.  APPL , 2001 .

[56]  Christophe Clanet,et al.  Drop friction on liquid-infused materials. , 2017, Soft matter.

[57]  B. Andreotti,et al.  Moving Contact Lines: Scales, Regimes, and Dynamical Transitions , 2013 .

[58]  野村栄一,et al.  2 , 1900, The Hatak Witches.

[59]  P. G. de Gennes,et al.  A model for contact angle hysteresis , 1984 .

[60]  H. Kusumaatmaja,et al.  Apparent contact angle and contact angle hysteresis on liquid infused surfaces. , 2016, Soft matter.

[61]  H. Butt,et al.  Dynamic measurement of the force required to move a liquid drop on a solid surface. , 2012, Langmuir : the ACS journal of surfaces and colloids.