3D Electron Diffraction: The Nanocrystallography Revolution

Crystallography of nanocrystalline materials has witnessed a true revolution in the past 10 years, thanks to the introduction of protocols for 3D acquisition and analysis of electron diffraction data. This method provides single-crystal data of structure solution and refinement quality, allowing the atomic structure determination of those materials that remained hitherto unknown because of their limited crystallinity. Several experimental protocols exist, which share the common idea of sampling a sequence of diffraction patterns while the crystal is tilted around a noncrystallographic axis, namely, the goniometer axis of the transmission electron microscope sample stage. This Outlook reviews most important 3D electron diffraction applications for different kinds of samples and problematics, related with both materials and life sciences. Structure refinement including dynamical scattering is also briefly discussed.

[1]  M. Gemmi,et al.  Daliranite, PbHgAs2S5: determination of the incommensurately modulated structure and revision of the chemical formula. , 2019, Acta crystallographica Section B, Structural science, crystal engineering and materials.

[2]  M. Gemmi,et al.  The crystal structure of orthocetamol solved by 3D electron diffraction. , 2019, Angewandte Chemie.

[3]  G. Parodi,et al.  Lasnierite, (Ca,Sr)(Mg,Fe)2Al(PO4)3, a new phosphate accompanying lazulite from Mt. Ibity, Madagascar: an example of structural characterization from dynamical refinement of precession electron diffraction data on submicrometre sample , 2019, European Journal of Mineralogy.

[4]  V. Petříček,et al.  Precession electron diffraction tomography on twinned crystals: application to CaTiO3 thin films , 2019, Journal of Applied Crystallography.

[5]  L. Palatinus,et al.  Electron diffraction determines molecular absolute configuration in a pharmaceutical nanocrystal , 2019, Science.

[6]  H. Klein,et al.  Low-dose electron diffraction tomography (LD-EDT). , 2019, Ultramicroscopy.

[7]  S. Weiner,et al.  A hydrated crystalline calcium carbonate phase: Calcium carbonate hemihydrate , 2019, Science.

[8]  José A. Rodríguez,et al.  Homochiral and racemic MicroED structures of a peptide repeat from the ice-nucleation protein InaZ , 2019, IUCrJ.

[9]  V. Cappello,et al.  Nanobeam precession-assisted 3D electron diffraction reveals a new polymorph of hen egg-white lysozyme , 2019, IUCrJ.

[10]  J. Abrahams,et al.  Reducing dynamical electron scattering reveals hydrogen atoms , 2019, Acta crystallographica. Section A, Foundations and advances.

[11]  P. Vanĕk,et al.  Multiple polarization mechanisms across the ferroelectric phase transition of the tetragonal tungsten-bronze Sr0.35Ba0.69Nb2O6.04 , 2018, Physical Review Materials.

[12]  I. Jenei,et al.  Formation of Hydrous, Pyroxene-Related Phases from LiAlSiO4 Glass in High-Pressure Hydrothermal Environments , 2018, ACS Earth and Space Chemistry.

[13]  M. Gemmi,et al.  A nanocrystalline monoclinic CaCO3 precursor of metastable aragonite , 2018, Science Advances.

[14]  Bin Wang,et al.  High-throughput continuous rotation electron diffraction data acquisition via software automation , 2018, Journal of applied crystallography.

[15]  Tim Gruene,et al.  Rapid Structure Determination of Microcrystalline Molecular Compounds Using Electron Diffraction , 2018, Angewandte Chemie.

[16]  M. Willinger,et al.  At the Gates: The Tantalum-Rich Phase Hf3Ta2O11 and its Commensurately Modulated Structure. , 2018, Inorganic chemistry.

[17]  Bin Wang,et al.  A Porous Cobalt Tetraphosphonate Metal-Organic Framework: Accurate Structure and Guest Molecule Location Determined by Continuous-Rotation Electron Diffraction. , 2018, Chemistry.

[18]  David S. Goodsell,et al.  RCSB Protein Data Bank: biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy , 2018, Nucleic Acids Res..

[19]  T. Gonen,et al.  MicroED data collection with SerialEM , 2018, bioRxiv.

[20]  Tamir Gonen,et al.  The CryoEM Method MicroED as a Powerful Tool for Small Molecule Structure Determination , 2018, ACS central science.

[21]  S. Nicolopoulos,et al.  Quasi-parallel precession diffraction: Alignment method for scanning transmission electron microscopes. , 2018, Ultramicroscopy.

[22]  A. Abakumov,et al.  In Situ Electron Diffraction Tomography Using a Liquid-Electrochemical Transmission Electron Microscopy Cell for Crystal Structure Determination of Cathode Materials for Li-Ion batteries. , 2018, Nano letters.

[23]  Gheorghe Borodi,et al.  Crystal Structures of Two Important Pharmaceuticals Solved by 3D Precession Electron Diffraction Tomography , 2018, Organic Process Research & Development.

[24]  L. Manna,et al.  Ab Initio Structure Determination of Cu2- xTe Plasmonic Nanocrystals by Precession-Assisted Electron Diffraction Tomography and HAADF-STEM Imaging. , 2018, Inorganic chemistry.

[25]  C. Domingo,et al.  Crystalline Curcumin bioMOF Obtained by Precipitation in Supercritical CO2 and Structural Determination by Electron Diffraction Tomography , 2018, ACS Sustainable Chemistry & Engineering.

[26]  J. Abrahams,et al.  Electron diffraction data processing with DIALS , 2018, Acta crystallographica. Section D, Structural biology.

[27]  X. Zou,et al.  An Extra-Large-Pore Zeolite with 24×8×8-Ring Channels Using a Structure-Directing Agent Derived from Traditional Chinese Medicine. , 2018, Angewandte Chemie.

[28]  E. Rauch,et al.  A novelty for cultural heritage material analysis: Transmission Electron Microscope (TEM) 3D electron diffraction tomography applied to Roman glass tesserae , 2018 .

[29]  J. Demel,et al.  Phosphinic Acid Based Linkers: Building Blocks in Metal-Organic Framework Chemistry. , 2018, Angewandte Chemie.

[30]  M. Preuss,et al.  A high-strength silicide phase in a stainless steel alloy designed for wear-resistant applications , 2018, Nature Communications.

[31]  Sven Hovmöller,et al.  A Rare Lysozyme Crystal Form Solved Using Highly Redundant Multiple Electron Diffraction Datasets from Micron-Sized Crystals. , 2018, Structure.

[32]  X. Zou,et al.  Two Aluminophosphate Molecular Sieves Built from Pairs of Enantiomeric Structural Building Units. , 2018, Angewandte Chemie.

[33]  F. Liang,et al.  CsSiB3O7: A Beryllium-Free Deep-Ultraviolet Nonlinear Optical Material Discovered by the Combination of Electron Diffraction and First-Principles Calculations , 2018 .

[34]  J. Abrahams,et al.  Electron diffraction and three-dimensional crystallography for structural biology , 2018 .

[35]  E. L. Guenther,et al.  Atomic-level evidence for packing and positional amyloid polymorphism by segment from TDP-43 RRM2 , 2018, Nature Structural & Molecular Biology.

[36]  U. Kolb,et al.  Ab initio structure determination and quantitative disorder analysis on nanoparticles by electron diffraction tomography. , 2018, Acta crystallographica. Section A, Foundations and advances.

[37]  Jie Su,et al.  Multidimensional Disorder in Zeolite IM-18 Revealed by Combining Transmission Electron Microscopy and X-ray Powder Diffraction Analyses , 2018 .

[38]  N. Barrier,et al.  Stairlike Aurivillius Phases in the Pseudobinary Bi5Nb3O15-ABi2Nb2O9 (A = Ba and Sr) System: A Comprehensive Analysis Using Superspace Group Formalism. , 2018, Inorganic chemistry.

[39]  J. Abrahams,et al.  Electron crystallography with the EIGER detector , 2018, IUCrJ.

[40]  M. Gemmi,et al.  Single-crystal analysis of nanodomains by electron diffraction tomography: mineralogy at the order-disorder borderline , 2018 .

[41]  F. von Delft,et al.  Where is crystallography going? , 2018, Acta crystallographica. Section D, Structural biology.

[42]  James E. Evans,et al.  Sub-ångstrom cryo-EM structure of a prion protofibril reveals a polar clasp , 2018, Nature Structural & Molecular Biology.

[43]  M. Yeager,et al.  MicroED structures of HIV-1 Gag CTD-SP1 reveal binding interactions with the maturation inhibitor bevirimat , 2017, Proceedings of the National Academy of Sciences.

[44]  J. Kaiser,et al.  The runners up. , 2017, Science.

[45]  Carmen C. Mayorga-Martinez,et al.  TaS3 Nanofibers: Layered Trichalcogenide for High-Performance Electronic and Sensing Devices. , 2017, ACS nano.

[46]  V. Caignaert,et al.  Combining Multiscale Approaches for the Structure Determination of an Iron Layered Oxysulfate: Sr4Fe2.5O7.25(SO4)0.5. , 2017, Inorganic chemistry.

[47]  P. Kužel,et al.  Band structure of CuMnAs probed by optical and photoemission spectroscopy , 2017, 1712.01007.

[48]  Shuai Yuan,et al.  [Ti8Zr2O12(COO)16] Cluster: An Ideal Inorganic Building Unit for Photoactive Metal–Organic Frameworks , 2017, ACS central science.

[49]  L. Szatmáry,et al.  Metatitanic acid pseudomorphs after titanyl sulfates: nanostructured sorbents and precursors for crystalline titania with desired particle size and shape , 2017 .

[50]  Aiping Chen,et al.  Novel Layered Supercell Structure from Bi2AlMnO6 for Multifunctionalities. , 2017, Nano letters.

[51]  C. Tai,et al.  Local disorder in Na0.5Bi0.5TiO3-piezoceramic determined by 3D electron diffuse scattering , 2017, Scientific Reports.

[52]  J. P. Abrahams,et al.  Protein structure determination by electron diffraction using a single three-dimensional nanocrystal , 2017, Acta crystallographica. Section D, Structural biology.

[53]  Jie Su,et al.  High-Throughput Synthesis and Structure of Zeolite ZSM-43 with Two-Directional 8-Ring Channels. , 2017, Inorganic chemistry.

[54]  D. Weber,et al.  Molybdenum Oxide Nitrides of the Mo2(O,N,□)5 Type: On the Way to Mo2O5. , 2017, Inorganic chemistry.

[55]  I. Pignatelli,et al.  Mineralogical, crystallographic and redox features of the earliest stages of fluid alteration in CM chondrites , 2017 .

[56]  Lars Öhrström,et al.  Elucidation of the elusive structure and formula of the active pharmaceutical ingredient bismuth subgallate by continuous rotation electron diffraction. , 2017, Chemical communications.

[57]  Wei Wan,et al.  Serial electron crystallography: merging diffraction data through rank aggregation , 2017 .

[58]  M. Klementová,et al.  Structure determination of a new phase Ni8Ti5 , 2017 .

[59]  P. Toulemonde,et al.  Ba19Cr12O45: A High Pressure Chromate with an Original Structure Solved by Electron Diffraction Tomography and Powder X-ray Diffraction. , 2017, Inorganic chemistry.

[60]  L. Molina‐Luna,et al.  Elucidating structural order and disorder phenomena in mullite-type Al4B2O9 by automated electron diffraction tomography , 2017 .

[61]  L. Liz‐Marzán,et al.  Structure and vacancy distribution in copper telluride nanoparticles influence plasmonic activity in the near-infrared , 2017, Nature Communications.

[62]  M. Schmidt,et al.  The structure of denisovite, a fibrous nanocrystalline polytypic disordered ‘very complex’ silicate, studied by a synergistic multi-disciplinary approach employing methods of electron crystallography and X-ray powder diffraction , 2017, IUCrJ.

[63]  M. Gemmi,et al.  Crystal Phases in Hybrid Metal-Semiconductor Nanowire Devices. , 2017, Nano letters.

[64]  David Eisenberg,et al.  Atomic resolution structures from fragmented protein crystals by the cryoEM method MicroED , 2017, Nature Methods.

[65]  S. Mintova,et al.  Hydrogen positions in single nanocrystals revealed by electron diffraction , 2017, Science.

[66]  M. Gemmi,et al.  (Na,□)5[MnO2]13 nanorods: a new tunnel structure for electrode materials determined ab initio and refined through a combination of electron and synchrotron diffraction data , 2016, Acta crystallographica Section B, Structural science, crystal engineering and materials.

[67]  M. Gemmi,et al.  Electron diffraction determination of 11.5 Å and HySo structures: Candidate water carriers to the Upper Mantle , 2016 .

[68]  U. Kolb,et al.  The crystallisation of copper(ii) phenylphosphonates. , 2016, Dalton transactions.

[69]  C. Lepoittevin Structure resolution by electron diffraction tomography of the complex layered iron-rich Fe-2234-type Sr 5 Fe 6 O 15.4 , 2016 .

[70]  D. Eisenberg,et al.  Ab initio structure determination from prion nanocrystals at atomic resolution by MicroED , 2016, Proceedings of the National Academy of Sciences.

[71]  J. Drahokoupil,et al.  Calcium-induced cation ordering and large resistivity decrease in Pr0.3CoO2 , 2016 .

[72]  N. Barrier,et al.  Unusual Relaxor Ferroelectric Behavior in Stairlike Aurivillius Phases. , 2016, Inorganic chemistry.

[73]  Avelino Corma,et al.  Ultrafast Electron Diffraction Tomography for Structure Determination of the New Zeolite ITQ-58 , 2016, Journal of the American Chemical Society.

[74]  E. Mugnaioli,et al.  What is the actual structure of samarskite-(Y)? A TEM investigation of metamict samarskite from the garnet codera dike pegmatite (Central Italian Alps) , 2016 .

[75]  J. Narayan,et al.  Two-Dimensional Layered Oxide Structures Tailored by Self-Assembled Layer Stacking via Interfacial Strain. , 2016, ACS applied materials & interfaces.

[76]  A. Brogi,et al.  Seismic slip recorded in tourmaline fault mirrors from Elba Island (Italy) , 2016 .

[77]  V. Caignaert,et al.  A Rutile Chevron Modulation in Delafossite-Like Ga3-xIn3TixO9+x/2. , 2016, Inorganic chemistry.

[78]  T. Gonen,et al.  The collection of MicroED data for macromolecular crystallography , 2016, Nature Protocols.

[79]  I. Bruno,et al.  The Cambridge Structural Database , 2016, Acta crystallographica Section B, Structural science, crystal engineering and materials.

[80]  J. Majzlan,et al.  Crystal structure of Fe2(AsO4)(HAsO4)(OH)(H2O)3, a dehydration product of kaňkite , 2016 .

[81]  P. Roussel,et al.  On the Use of Dynamical Diffraction Theory To Refine Crystal Structure from Electron Diffraction Data: Application to KLa5O5(VO4)2, a Material with Promising Luminescent Properties. , 2016, Inorganic chemistry.

[82]  K. Stevenson,et al.  Switching between solid solution and two-phase regimes in the Li1-xFe1-yMnyPO4 cathode materials during lithium (de)insertion: combined PITT, in situ XRPD and electron diffraction tomography study , 2016 .

[83]  N S Pannu,et al.  Ab initio structure determination of nanocrystals of organic pharmaceutical compounds by electron diffraction at room temperature using a Timepix quantum area direct electron detector , 2016, Acta crystallographica. Section A, Foundations and advances.

[84]  V. Petříček,et al.  Structure refinement using precession electron diffraction tomography and dynamical diffraction: tests on experimental data. , 2015, Acta crystallographica Section B, Structural science, crystal engineering and materials.

[85]  Nicholas K. Sauter,et al.  Structure of the toxic core of α-synuclein from invisible crystals , 2015, Nature.

[86]  L. Molina‐Luna,et al.  High-Pressure Synthesis of Novel Boron Oxynitride B6N4O3 with Sphalerite Type Structure , 2015 .

[87]  Alex G. Greenaway,et al.  A zeolite family with expanding structural complexity and embedded isoreticular structures , 2015, Nature.

[88]  M. Gemmi,et al.  Fast electron diffraction tomography , 2015 .

[89]  Yifan Cheng Single-Particle Cryo-EM at Crystallographic Resolution , 2015, Cell.

[90]  V. Petříček,et al.  Structure refinement using precession electron diffraction tomography and dynamical diffraction: theory and implementation. , 2015, Acta crystallographica. Section A, Foundations and advances.

[91]  Koji Yonekura,et al.  Electron crystallography of ultrathin 3D protein crystals: Atomic model with charges , 2015, Proceedings of the National Academy of Sciences.

[92]  U. Kolb,et al.  Crystalline Non‐Equilibrium Phase of a Cobalt(II) Complex with Tridentate Ligands , 2015 .

[93]  Jie Su,et al.  Phase identification and structure determination from multiphase crystalline powder samples by rotation electron diffraction , 2014 .

[94]  U. Kolb,et al.  Atomic structure solution of the complex quasicrystal approximant Al77Rh15Ru8 from electron diffraction data. , 2014, Acta crystallographica Section B, Structural science, crystal engineering and materials.

[95]  U. Kolb,et al.  Synthesis of a quenchable high-pressure form of magnetite (h-Fe3O4) with composition Fel(Fe2+ 0.75Mg0.26)Fe2(Fe3+ 0.70Cr0.15Al0.11Si0.04)2O4 , 2014 .

[96]  L. Bergström,et al.  Probing planar defects in nanoparticle superlattices by 3D small-angle electron diffraction tomography and real space imaging. , 2014, Nanoscale.

[97]  T. Gonen,et al.  Structure of catalase determined by MicroED , 2014, eLife.

[98]  X. Zou,et al.  EMM-23: a stable high-silica multidimensional zeolite with extra-large trilobe-shaped channels. , 2014, Journal of the American Chemical Society.

[99]  P. Emsley,et al.  The Structure of the Yeast Mitochondrial Large Ribosomal Subunit , 2014 .

[100]  Tamir Gonen,et al.  High-resolution structure determination by continuous rotation data collection in MicroED , 2014, Nature Methods.

[101]  U. Kolb,et al.  Evidence of noncentrosymmetry of human tooth hydroxyapatite crystals. , 2014, Chemistry.

[102]  D. Chateigner,et al.  Structural analysis of strained LaVO3 thin films , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[103]  U. Kolb,et al.  The Bi sulfates from the Alfenza Mine, Crodo, Italy: An automatic electron diffraction tomography (ADT) study , 2014 .

[104]  S. Hovmöller,et al.  A complex pseudo-decagonal quasicrystal approximant, Al37(Co,Ni)15.5, solved by rotation electron diffraction , 2014 .

[105]  M. Klementová,et al.  Crystal structure of lead uranyl carbonate mineral widenmannite: Precession electron-diffraction and synchrotron powder-diffraction study , 2014 .

[106]  A. Vedda,et al.  Eu Incorporation into Sol−Gel Silica for Photonic Applications: Spectroscopic and TEM Evidences of α‑Quartz and Eu Pyrosilicate Nanocrystal Growth , 2013 .

[107]  Tamir Gonen,et al.  Three-dimensional electron crystallography of protein microcrystals , 2013, eLife.

[108]  Sven Hovmöller,et al.  Three-dimensional rotation electron diffraction: software RED for automated data collection and data processing , 2013, Journal of applied crystallography.

[109]  Jie Su,et al.  Single-crystal structure of a covalent organic framework. , 2013, Journal of the American Chemical Society.

[110]  I. Pignatelli,et al.  A Multi-Technique Characterization of Cronstedtite Synthesized by Iron-Clay Interaction in a Step-By-Step Cooling Procedure , 2013, Clays and Clay Minerals.

[111]  Jan Pieter Abrahams,et al.  A Medipix quantum area detector allows rotation electron diffraction data collection from submicrometre three-dimensional protein crystals , 2013, Acta crystallographica. Section D, Biological crystallography.

[112]  U. Kolb,et al.  Application of δ recycling to electron automated diffraction tomography data from inorganic crystalline nanovolumes. , 2013, Acta crystallographica. Section A, Foundations of crystallography.

[113]  D. Agard,et al.  Electron counting and beam-induced motion correction enable near atomic resolution single particle cryoEM , 2013, Nature Methods.

[114]  N. Barrier,et al.  Precession electron diffraction tomography for solving complex modulated structures: the case of Bi5Nb3O15. , 2013, Inorganic chemistry.

[115]  A. Corma,et al.  Synthesis of an extra-large molecular sieve using proton sponges as organic structure-directing agents , 2013, Proceedings of the National Academy of Sciences.

[116]  M. Gemmi,et al.  Scanning reciprocal space for solving unknown structures: energy filtered diffraction tomography and rotation diffraction tomography methods , 2012 .

[117]  Johannes M. Dieterich,et al.  Automated diffraction tomography for the structure elucidation of twinned, sub-micrometer crystals of a highly porous, catalytically active bismuth metal-organic framework. , 2012, Angewandte Chemie.

[118]  W. Tremel,et al.  Ab Initio structure determination of vaterite by automated electron diffraction. , 2012, Angewandte Chemie.

[119]  Andreas F. M. Kilbinger,et al.  Ab-initio crystal structure analysis and refinement approaches of oligo p-benzamides based on electron diffraction data. , 2012, Acta crystallographica. Section B, Structural science.

[120]  M. Gemmi,et al.  Structure of the new mineral sarrabusite, Pb5CuCl4(SeO3)4, solved by manual electron-diffraction tomography. , 2012, Acta crystallographica. Section B, Structural science.

[121]  U. Kolb,et al.  ECS-3: a crystalline hybrid organic-inorganic aluminosilicate with open porosity. , 2012, Angewandte Chemie.

[122]  J. Abrahams,et al.  Image Processing and Lattice Determination for Three-Dimensional Nanocrystals , 2011, Microscopy and Microanalysis.

[123]  U. Kolb,et al.  A new hydrous Al-bearing pyroxene as a water carrier in subduction zones , 2011 .

[124]  A. Corma,et al.  Synthesis and Structure Determination of the Hierarchical Meso-Microporous Zeolite ITQ-43 , 2011, Science.

[125]  U. Kolb,et al.  Automated electron diffraction tomography – a new tool for nano crystal structure analysis , 2011 .

[126]  W. Tremel,et al.  Structure analysis of titanate nanorods by automated electron diffraction tomography. , 2011, Acta crystallographica. Section B, Structural science.

[127]  V. Petříček,et al.  An incommensurately modulated structure of η'-phase of Cu(3+x)Si determined by quantitative electron diffraction tomography. , 2011, Inorganic chemistry.

[128]  M. Hirscher,et al.  Elucidating gating effects for hydrogen sorption in MFU-4-type triazolate-based metal-organic frameworks featuring different pore sizes. , 2011, Chemistry.

[129]  U. Kolb,et al.  Structural Characterization of Organics Using Manual and Automated Electron Diffraction , 2010 .

[130]  W. Tremel,et al.  Solution synthesis of a new thermoelectric Zn(1+x)Sb nanophase and its structure determination using automated electron diffraction tomography. , 2010, Journal of the American Chemical Society.

[131]  S. Hovmöller,et al.  Collecting 3D electron diffraction data by the rotation method , 2010 .

[132]  U. Kolb,et al.  The structure of charoite, (K,Sr,Ba,Mn)15-16(Ca,Na)32[(Si70(O,OH)180)](OH,F)4.0‧nH2O, solved by conventional and automated electron diffraction , 2010, Mineralogical Magazine.

[133]  Saulius Gražulis,et al.  Crystallography Open Database – an open-access collection of crystal structures , 2009, Journal of applied crystallography.

[134]  U. Kolb,et al.  "Ab initio" structure solution from electron diffraction data obtained by a combination of automated diffraction tomography and precession technique. , 2009, Ultramicroscopy.

[135]  U. Kolb,et al.  Towards automated diffraction tomography. Part II--Cell parameter determination. , 2008, Ultramicroscopy.

[136]  Gervais Chapuis,et al.  SUPERFLIP– a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions , 2007 .

[137]  U. Kolb,et al.  Towards automated diffraction tomography: part I--data acquisition. , 2007, Ultramicroscopy.

[138]  C. Gilmore,et al.  Electron crystallography of zeolites--the MWW family as a test of direct 3D structure determination. , 2005, Acta crystallographica. Section A, Foundations of crystallography.

[139]  Lawrence F. Drummy,et al.  High resolution electron microscopy of ordered polymers and organic molecular crystals: Recent developments and future possibilities , 2005 .

[140]  R. Downs Topology of the pyroxenes as a function of temperature, pressure, and composition as determined from the procrystal electron density , 2003 .

[141]  P. Luksch,et al.  New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design. , 2002, Acta crystallographica. Section B, Structural science.

[142]  S. Hovmöller,et al.  A crystal structure determined with 0.02 Å accuracy by electron microscopy , 1996, Nature.

[143]  R Henderson,et al.  Electron-crystallographic refinement of the structure of bacteriorhodopsin. , 1996, Journal of molecular biology.

[144]  Douglas L. Dorset,et al.  Structural Electron Crystallography , 1995, Springer US.

[145]  R. Henderson The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules , 1995, Quarterly Reviews of Biophysics.

[146]  Paul A. Midgley,et al.  Double conical beam-rocking system for measurement of integrated electron diffraction intensities , 1994 .

[147]  Yoshinori Fujiyoshi,et al.  Atomic model of plant light-harvesting complex by electron crystallography , 1994, Nature.

[148]  K. Downing,et al.  High-resolution electron crystallography of protein molecules. , 1993, Ultramicroscopy.

[149]  J. Zuo,et al.  Automated structure factor refinement from convergent-beam patterns , 1991 .

[150]  R. Henderson,et al.  Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. , 1990, Journal of molecular biology.

[151]  R. Henderson,et al.  Three-dimensional model of purple membrane obtained by electron microscopy , 1975, Nature.

[152]  Lukáš Palatinus Aperiodic crystals , 2016 .

[153]  J. Zuo,et al.  Solving protein nanocrystals by cryo-EM diffraction: multiple scattering artifacts. , 2015, Ultramicroscopy.

[154]  J. Abrahams,et al.  Evaluation of Medipix2 detector for recording electron diffraction data in low dose conditions , 2011 .

[155]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[156]  S. Harrison,et al.  Lipid–protein interactions in double-layered two-dimensional AQP0 crystals , 2005 .

[157]  S. Hovmöller,et al.  Structures of nanometre-size crystals determined from selected-area electron diffraction data. , 2000, Acta crystallographica. Section A, Foundations of crystallography.

[158]  D. Dorset Electron crystallography. , 1996, Acta crystallographica. Section B, Structural science.

[159]  J. M. Cowley Electron diffraction techniques , 1992 .

[160]  H. Hauptman,et al.  Direct phase determination for quasi-kinematical electron diffraction intensity data from organic microcrystals. , 1976, Ultramicroscopy.