On inductive limits of matrix algebras over the two-torus

It will be shown in this paper that certain real rank zero C*-algebras which are inductive limits of C*-algebras of the form ⊕ i M k i (C([inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="01i" /])) can be expressed as inductive limits of C*-algebras of the form ⊕ i M k i (C( S 1 )). In particular, if both A and B are of real rank zero and are inductive limits of C*-algebras of the form ⊕ i M k i (C( S 1 )), then also A ⊗ B is an inductive limit of C*-algebras of the form ⊕ i M k i (C( S 1 )). (Hence, A ⊗ B can be classified by its K-theory.) This is a key step in the general classification theory of inductive limit C*-algebras.

[1]  Hongbing Su On the Classification of C*-Algebras of Real Rank Zero: Inductive Limits of Matrix Algebras over Non-Hausdorff Graphs , 1995 .

[2]  N. Phillips HOW MANY EXPONENTIALS , 1994 .

[3]  K. Thomsen Inductive Limits of Interval Algebras: The Tracial State Space , 1994 .

[4]  G. Elliott,et al.  The structure of the irrational rotation C*-algebra , 1993 .

[5]  Huaxin Lin Exponential Rank of C*-Algebras with Real Rank Zero and the Brown-Pedersen Conjectures , 1993 .

[6]  K. Thomsen Homomorphisms between finite direct sums of circle algebras , 1992 .

[7]  K. Goodearl Notes on a class of simple $C^*$-algebras with real rank zero , 1992 .

[8]  Huaxin Lin,et al.  The Exponential Rank of Inductive Limit $C^*$-Algebras. , 1992 .

[9]  O. Bratteli,et al.  Reduction of real rank in inductive limits ofC*-algebras , 1992 .

[10]  B. Blackadar,et al.  The real rank of inductive limit $C^*$-algebras. , 1991 .

[11]  N. Phillips Simple $C^*$-algebras with the property weak (FU). , 1991 .

[12]  Huaxin Lin GENERALIZED WEYL-VON NEUMANN THEOREMS , 1991 .

[13]  G. Pedersen,et al.  C∗-algebras of real rank zero , 1991 .

[14]  T. Loring TheK-theory of AF embeddings of the rational rotation algebras , 1991 .

[15]  A. Kishimoto Actions of finite groups on certain inductive limit C*‐algebras , 1990 .

[16]  Alain Connes,et al.  Non-commutative differential geometry , 1985 .

[17]  B. Blackadar,et al.  Shape theory for $C^*$-algebras. , 1985 .

[18]  M. Rieffel The cancellation theorem for projective modules over irrational rotation C*-algebras , 1983 .

[19]  J. Bunce,et al.  A family of simple C∗-algebras related to weighted shift operators , 1975 .

[20]  O. Bratteli Inductive limits of nite dimensional C-algebras , 1972 .

[21]  James Glimm,et al.  On a certain class of operator algebras , 1960 .

[22]  G. Bliss Jacobi’s condition for problems of the calculus of variations in parametric form , 1916 .

[23]  George A. Elliott,et al.  On the classification of C*-algebras of real rank zero. , 1993 .

[24]  T. Loring,et al.  Extending cellular cohomology to C*-algebras , 1992 .

[25]  George A. Elliott,et al.  On the classification of inductive limits of sequences of semisimple finite-dimensional algebras , 1976 .