Phase change materials integrated solar thermal energy systems: Global trends and current practices in experimental approaches

[1]  D. Morrison,et al.  Effects of phase-change energy storage on the performance of air-based and liquid-based solar heating systems , 1977 .

[2]  E. C. Kern,et al.  Combined photovoltaic and thermal hybrid collector systems , 1978 .

[3]  J. J. Jurinak,et al.  On the performance of air-based solar heating systems utilizing phase-change energy storage , 1979 .

[4]  A. K. Bhargava A solar water heater based on phase-changing material , 1983 .

[5]  A. Abhat Low temperature latent heat thermal energy storage: Heat storage materials , 1983 .

[6]  Judith Gurney BP Statistical Review of World Energy , 1985 .

[7]  D. Feldman,et al.  Organic phase change materials for thermal energy storage , 1986 .

[8]  A. El-sebaii,et al.  Cooking during off-sunshine hours using PCMs as storage media , 1995 .

[9]  J. Schlaich Solar Chimney: Electricity from the Sun , 1996 .

[10]  A. Mohamad High efficiency solar air heater , 1997 .

[11]  D. Buddhi,et al.  Solar cooker with latent heat storage: Design and experimental testing , 1997 .

[12]  R. L. Sawhney,et al.  Design, development and performance evaluation of a latent heat storage unit for evening cooking in a solar cooker , 2000 .

[13]  Bin-Juine Huang,et al.  PERFORMANCE EVALUATION OF SOLAR PHOTOVOLTAIC / THERMAL SYSTEMS , 2001 .

[14]  S. O. Enibe,et al.  Performance of a natural circulation solar air heating system with phase change material energy storage , 2002 .

[15]  Eckhard Lüpfert,et al.  Advances in Parabolic Trough Solar Power Technology , 2002 .

[16]  A. Sari,et al.  Thermal Performance of a Eutectic Mixture of Lauric and Stearic Acids as PCM Encapsulated in the Annulus of Two Concentric Pipes , 2002 .

[17]  Y. Tripanagnostopoulos,et al.  Hybrid photovoltaic/thermal solar systems , 2002 .

[18]  A. Sharma,et al.  Thermal performance evaluation of a latent heat storage unit for late evening cooking in a solar cooker having three reflectors , 2003 .

[19]  Carson C. Chow,et al.  Performance of a solar chimney , 2003 .

[20]  Luisa F. Cabeza,et al.  Review on thermal energy storage with phase change: materials, heat transfer analysis and applications , 2003 .

[21]  D. Kearney,et al.  Assessment of a Molten Salt Heat Transfer Fluid in a Parabolic Trough Solar Field , 2003 .

[22]  Soteris A. Kalogirou,et al.  Solar thermal collectors and applications , 2004 .

[23]  Amar M. Khudhair,et al.  A review on phase change energy storage: materials and applications , 2004 .

[24]  John W. Kelton,et al.  Testing of Thermocline Filler Materials and Molten-Salt Heat Transfer Fluids for Thermal Energy Storage Systems in Parabolic Trough Power Plants , 2004 .

[25]  Doerte Laing,et al.  Advanced Thermal Energy Storage Technology for Parabolic Trough , 2004 .

[26]  S. D. Sharma,et al.  Thermal performance of a solar cooker based on an evacuated tube solar collector with a PCM storage unit , 2005 .

[27]  K. Sagara,et al.  Latent Heat Storage Materials and Systems: A Review , 2005 .

[28]  Chii-Dong Ho,et al.  Heat-transfer enhancement in double-pass flat-plate solar air heaters with recycle , 2005 .

[29]  M. Dennis,et al.  Solar thermal energy systems in Australia , 2006 .

[30]  S. Cuevas,et al.  Enhanced heat transfer using oscillatory flows in solar collectors , 2006 .

[31]  K. Srithar,et al.  Prospects and scopes of solar pond: A detailed review , 2008 .

[32]  V. Tyagi,et al.  Thermal cycle testing of calcium chloride hexahydrate as a possible PCM for latent heat storage , 2008 .

[33]  A. Sari,et al.  Preparation and thermal properties of capric acid/palmitic acid eutectic mixture as a phase change energy storage material , 2008 .

[34]  Y. Varol,et al.  Energy and exergy analysis of a latent heat storage system with phase change material for a solar collector , 2008 .

[35]  A. Sharma,et al.  Numerical heat transfer studies of PCMs used in a box-type solar cooker , 2008 .

[36]  N. Siegel,et al.  MOLTEN NITRATE SALT DEVELOPMENT FOR THERMAL ENERGY STORAGE IN PARABOLIC TROUGH SOLAR POWER SYSTEMS , 2008 .

[37]  R. Tamme,et al.  Development of PCM Storage for Process Heat and Power Generation , 2009 .

[38]  Atul Sharma,et al.  Solar cooker with latent heat storage systems: A review , 2009 .

[39]  K. C. Divya,et al.  Battery Energy Storage Technology for power systems-An overview , 2009 .

[40]  Kamaruzzaman Sopian,et al.  Output Air Temperature Prediction in a Solar Air Heater Integrated with Phase Change Material , 2009 .

[41]  L. Cabeza,et al.  Utilization of phase change materials in solar domestic hot water systems , 2009 .

[42]  M. Epstein,et al.  Heat transfer efficient thermal energy storage for steam generation , 2010 .

[43]  R. Velraj,et al.  Solar cookers with and without thermal storage—A review , 2010 .

[44]  M. Kenisarin High-temperature phase change materials for thermal energy storage , 2010 .

[45]  Luisa F. Cabeza,et al.  State of the art on high temperature thermal energy storage for power generation. Part 1—Concepts, materials and modellization , 2010 .

[46]  Fang Wang,et al.  A review of solar chimney power technology , 2010, Renewable and Sustainable Energy Reviews.

[47]  Ahmed A. Al-Ghamdi,et al.  One thousand thermal cycles of magnesium chloride hexahydrate as a promising PCM for indoor solar cooking , 2011 .

[48]  Chih-Chung Chang,et al.  Heat pipe with PCM for electronic cooling , 2011 .

[49]  R. Crook,et al.  Energy balance model of combined photovoltaic solar-thermal system incorporating phase change material , 2011 .

[50]  S. C. Kaushik,et al.  Thermal performance evaluation of a solar air heater with and without thermal energy storage , 2012, Journal of Thermal Analysis and Calorimetry.

[51]  O. Nydal,et al.  Investigation of a small scale double-reflector solar concentrating system with high temperature heat storage , 2011 .

[52]  T. L. Bergman,et al.  Economic evaluation of latent heat thermal energy storage using embedded thermosyphons for concentrating solar power applications , 2011 .

[53]  Chong-fang Ma,et al.  Experimental study on optimized composition of mixed carbonate for phase change thermal storage in solar thermal power plant , 2011 .

[54]  R. Pitchumani,et al.  Analysis and optimization of a latent thermal energy storage system with embedded heat pipes , 2011 .

[55]  Atakan Avci,et al.  The thermal analysis of paraffin wax in a box-type solar cooker , 2012 .

[56]  R. Abbas,et al.  Solar radiation concentration features in Linear Fresnel Reflector arrays , 2012 .

[57]  S. Khare,et al.  Selection of materials for high temperature latent heat energy storage , 2012 .

[58]  G. Kumaresan,et al.  Performance studies of a solar parabolic trough collector with a thermal energy storage system , 2012 .

[59]  Abdallah Khellaf,et al.  A review of studies on central receiver solar thermal power plants , 2013 .

[60]  Amit Kumar,et al.  Experimental investigation of a solar cooker based on parabolic dish collector with phase change thermal storage unit in Indian climatic conditions , 2013 .

[61]  Antonio Lecuona,et al.  Solar cooker of the portable parabolic type incorporating heat storage based on PCM , 2013 .

[62]  Noel León,et al.  High temperature latent heat thermal energy storage: Phase change materials, design considerations and performance enhancement techniques , 2013 .

[63]  K. Murugavel,et al.  Experimental study on double pass solar air heater with thermal energy storage , 2013 .

[64]  R. Velraj,et al.  Experimental investigation on phase change material based thermal storage system for solar air heating applications , 2013 .

[65]  Ya-Ling He,et al.  Numerical study on coupling phase change heat transfer performance of solar dish collector , 2013 .

[66]  S. K. Tyagi,et al.  Exergy and energy analyses of two different types of PCM based thermal management systems for space air conditioning applications , 2013 .

[67]  A. Farhat,et al.  Performance of a new solar air heater with packed-bed latent storage energy for nocturnal use , 2013 .

[68]  Changying Zhao,et al.  A review of solar collectors and thermal energy storage in solar thermal applications , 2013 .

[69]  G. Zhu Development of an Analytical Optical Method for Linear Fresnel Collectors , 2013 .

[70]  Kadhim H. Suffer,et al.  A storage domestic solar hot water system with a back layer of phase change material , 2013 .

[71]  A. Alemrajabi,et al.  Phase change material for enhancing solar water heater, an experimental approach , 2013 .

[72]  Elias K. Stefanakos,et al.  Thermal energy storage technologies and systems for concentrating solar power plants , 2013 .

[73]  Teuku Meurah Indra Mahlia,et al.  Curbing global warming with phase change materials for energy storage , 2013 .

[74]  B. Kalidasan,et al.  Study on Effect of Number of Transparent Covers and Refractive Index on Performance of Solar Water Heater , 2014 .

[75]  Ahmad Hasan,et al.  Energy and Cost Saving of a Photovoltaic-Phase Change Materials (PV-PCM) System through Temperature Regulation and Performance Enhancement of Photovoltaics , 2014 .

[76]  M. H. Mahfuz,et al.  Exergetic analysis of a solar thermal power system with pcm storage , 2014 .

[77]  C. Ménézo,et al.  Study of the thermal and electrical performances of PVT solar hot water system , 2014 .

[78]  M. H. Mahfuz,et al.  Performance investigation of thermal energy storage system with Phase Change Material (PCM) for solar water heating application , 2014 .

[79]  Chuck Kutscher,et al.  History, current state, and future of linear Fresnel concentrating solar collectors , 2014 .

[80]  Hongxing Yang,et al.  Using phase change materials in photovoltaic systems for thermal regulation and electrical efficiency improvement: A review and outlook , 2015 .

[81]  Luisa F. Cabeza,et al.  Experimental evaluation at pilot plant scale of multiple PCMs (cascaded) vs. single PCM configuration for thermal energy storage , 2015 .

[82]  Peiwen Li,et al.  Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: A review to recent developments , 2015 .

[83]  Mohd. Kaleem Khan,et al.  Performance enhancement of solar collectors—A review , 2015 .

[84]  Cheng-Xian Lin,et al.  A review of PV–T systems: Thermal management and efficiency with single phase cooling , 2015 .

[85]  Brian Norton,et al.  Phase change materials for photovoltaic thermal management , 2015 .

[86]  D. Brüggemann,et al.  Galactitol as phase change material for latent heat storage of solar cookers: Investigating thermal behavior in bulk cycling , 2015 .

[87]  M. Farid,et al.  Improving the efficiency of photovoltaic cells using PCM infused graphite and aluminium fins , 2015 .

[88]  Chi-ming Lai,et al.  Thermal and electrical performance of a water-surface floating PV integrated with a water-saturated MEPCM layer , 2015 .

[89]  Brian Norton,et al.  Increased photovoltaic performance through temperature regulation by phase change materials: Materials comparison in different climates , 2015 .

[90]  Ashmore Mawire,et al.  Solar Thermal Energy Storage for Solar Cookers , 2015 .

[91]  R. K. Sharma,et al.  Developments in organic solid–liquid phase change materials and their applications in thermal energy storage , 2015 .

[92]  Mohammad Mehrali,et al.  Theoretical model of an evacuated tube heat pipe solar collector integrated with phase change material , 2015 .

[93]  T. Srinivas,et al.  Absorber Tube with Internal Hinged Blades for Solar Parabolic Trough Collector , 2016 .

[94]  Brian Norton,et al.  Heat retention of a photovoltaic/thermal collector with PCM , 2016 .

[95]  Uroš Stritih,et al.  Increasing the efficiency of PV panel with the use of PCM , 2016 .

[96]  A. Kabeel,et al.  The effects of graphite nanoparticles, phase change material, and film cooling on the solar still performance , 2016, 1605.01819.

[97]  R. Sekret,et al.  Experimental study of evacuated tube collector/storage system containing paraffin as a PCM , 2016 .

[98]  Chi-Ming Lai,et al.  Thermal and electrical performances of a water-surface floating PV integrated with double water-saturated MEPCM layers , 2016 .

[99]  Zhonghao Rao,et al.  Thermal performance of phase change material/oscillating heat pipe-based battery thermal management system , 2016 .

[100]  Paul Cooper,et al.  Thermal performance investigation and optimization of buildings with integrated phase change materials and solar photovoltaic thermal collectors , 2016 .

[101]  K. Reddy,et al.  Performance enhancement of a Building-Integrated Concentrating Photovoltaic system using phase change material , 2016 .

[102]  Miqdam T. Chaichan,et al.  Design and assessment of solar concentrator distillating system using phase change materials (PCM) suitable for desertic weathers , 2016 .

[103]  Amenallah Guizani,et al.  Solar air heater with phase change material: An energy analysis and a comparative study , 2016 .

[104]  N. Boopalan,et al.  Ameliorating Heat Transfer Performance of Absorber Tube for Single Axis Concentrators , 2016 .

[105]  T. Srinivas,et al.  Absorber Tube with Internal Pin-Fins for Solar Parabolic Trough Collector , 2016 .

[106]  Rhys Jacob,et al.  Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies , 2016 .

[107]  State of the art review of thermal energy storage systems using PCM operating with small temperature differences: Focus on Paraffin , 2016 .

[108]  Vladimir A. Pozdin,et al.  Evacuated tube solar collectors integrated with phase change materials , 2016 .

[109]  Yanjun Dai,et al.  Performance assessment of a single/double hybrid effect absorption cooling system driven by linear Fresnel solar collectors with latent thermal storage , 2017 .

[110]  R. Rajavel,et al.  Experimental Investigations on The Performance of A Solar Pond by using Encapsulated Pcm with Nanoparticles , 2017 .

[111]  R. Senthil,et al.  Effect of the phase change material in a solar receiver on thermal performance of parabolic dish collector , 2017 .

[112]  A. Sari,et al.  Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes , 2017 .

[113]  A. Zakhidov,et al.  Evacuated tube solar collector with multifunctional absorber layers , 2017 .

[114]  Brij M. Bhushan,et al.  Experimental investigation of water based photovoltaic/thermal (PV/T) system with and without phase change material (PCM) , 2017 .

[115]  L. Suganthi,et al.  Nanoparticles Enhanced Phase Change Material (NPCM) as Heat Storage in Solar Still Application for Productivity Enhancement , 2017 .

[116]  A. Guizani,et al.  A highly efficient solution of off-sunshine solar air heating using two packed beds of latent storage energy , 2017 .

[117]  G. Fang,et al.  Maximizing the energy output of a photovoltaic-thermal solar collector incorporating phase change materials , 2017 .

[118]  Guoqiang Zhang,et al.  Performance of buildings integrated with a photovoltaic–thermal collector and phase change materials , 2017 .

[119]  Xiaolin Wang,et al.  Thermal performance evaluation of an integrated photovoltaic thermal-phase change material system using Taguchi method , 2017 .

[120]  A. Chiasson,et al.  Thermal Study of Hybrid Photovoltaic-Thermal (PVT) Solar Collectors Combined with Borehole Thermal Energy Storage Systems , 2017 .

[121]  A. Kabeel,et al.  Improvement of thermal performance of the finned plate solar air heater by using latent heat thermal storage , 2017 .

[122]  P. Muthukumar,et al.  Performance studies on a forced convection solar dryer integrated with a paraffin wax–based latent heat storage system , 2017 .

[123]  Mohamed Gadalla,et al.  Thermo-economic analysis of an integrated solar power generation system using nanofluids , 2017 .

[124]  Pengfei Jie,et al.  Experimental study on thermal performance of phase change material passive and active combined using for building application in winter , 2017 .

[125]  Michael E. Cholette,et al.  Multi-layer PCM solidification in a finned triplex tube considering natural convection , 2017 .

[126]  Alibakhsh Kasaeian,et al.  A review on solar chimney systems , 2017 .

[127]  Amit Kumar,et al.  Techno-economic evaluation of solar-based thermal energy storage systems , 2017 .

[128]  G. Fang,et al.  Thermal energy storage materials and systems for solar energy applications , 2017 .

[129]  Agis M. Papadopoulos,et al.  Energy and Environmental Performance of Solar Thermal Systems in Hotel Buildings , 2017 .

[130]  Shufen Zhang,et al.  Light-heat conversion and thermal conductivity enhancement of PEG/SiO2 composite PCM by in situ Ti4O7 doping , 2017 .

[131]  Ahmed M. Soliman,et al.  Design analysis factors and specifications of solar dish technologies for different systems and applications , 2017 .

[132]  E. Long,et al.  Experimental Study on Thermal Energy Storage Performance of Water Tank with Phase Change Materials in Solar Heating System , 2017 .

[133]  Nasrudin Abd Rahim,et al.  Novel approaches and recent developments on potential applications of phase change materials in solar energy , 2018 .

[134]  N. Mostafa,et al.  An experimental investigation of the phase change process effects on the system performance for the evacuated tube solar collectors integrated with PCMs , 2018, Energy Conversion and Management.

[135]  K. S. Ong,et al.  Review of solar water heaters incorporating solid-liquid organic phase change materials as thermal storage , 2018 .

[136]  M. Lightstone,et al.  Potential of cascaded phase change materials in enhancing the performance of solar domestic hot water systems , 2018 .

[137]  Majid Amidpour,et al.  Integration of a solar pond with a latent heat storage system , 2018, Renewable Energy.

[138]  Mohamed Hany Abokersh,et al.  Review of the phase change material (PCM) usage for solar domestic water heating systems (SDWHS) , 2018 .

[139]  M. Al-harahsheh,et al.  Theoretical investigation of solar desalination with solar still having phase change material and connected to a solar collector , 2018, Desalination.

[140]  A. Autee,et al.  Experimental analysis of solar fish dryer using phase change material , 2018, Journal of Energy Storage.

[141]  Sandy Rodrigues,et al.  Environmental and economic analysis of solar systems in Madeira, Portugal , 2018, Utilities Policy.

[142]  Majid Ali,et al.  Fatty acids based eutectic phase change system for thermal energy storage applications , 2018, Applied Thermal Engineering.

[143]  E. Baniasadi,et al.  Numerical analysis of a new thermal energy storage system using phase change materials for direct steam parabolic trough solar power plants , 2018, Solar Energy.

[144]  John L. Zhou,et al.  The feasibility of a collapsible parabolic solar cooker incorporating phase change materials , 2019, Renewable Energy Focus.

[145]  S. Jayaraj,et al.  A cost-effective method to improve the performance of solar air heaters using discrete macro-encapsulated PCM capsules for drying applications , 2019, Applied Thermal Engineering.

[146]  Gyula Gróf,et al.  Evacuated tube solar collector performance using copper nanofluid: Energy and environmental analysis , 2019, Applied Thermal Engineering.

[147]  Arvind Kumar,et al.  Diurnal thermal performance characterization of a solar air heater at local and global scales integrated with thermal battery , 2019, Energy.

[148]  Arun Kumar Pandey,et al.  Two side serpentine flow based photovoltaic-thermal-phase change materials (PVT-PCM) system: Energy, exergy and economic analysis , 2019, Renewable Energy.

[149]  Binlin Dou,et al.  An experimental investigation on thermal stratification characteristics with PCMs in solar water tank , 2019, Solar Energy.

[150]  Bo Zhang,et al.  Stearic acid/expanded graphite as a composite phase change thermal energy storage material for tankless solar water heater , 2019, Sustainable Cities and Society.

[151]  M. Beccali,et al.  Energy and environmental life-cycle impacts of solar-assisted systems: The application of the tool “ELISA” , 2019 .

[152]  A. Kasaeian,et al.  Experimental study of the effect of using phase change materials on the performance of an air-cooled photovoltaic system , 2019, Renewable and Sustainable Energy Reviews.

[153]  A. Sreekumar,et al.  Thermal reliability and corrosion characteristics of an organic phase change materials for solar space heating applications , 2019, Journal of Energy Storage.

[154]  Xin-xin Zhang,et al.  Review on micro/nano phase change materials for solar thermal applications , 2019, Renewable Energy.

[155]  H. Hassan,et al.  An experimental study on the performance of single slope solar still integrated with a PCM-based pin-finned heat sink , 2019, Energy Procedia.

[156]  K. Sopian,et al.  Experimental investigation of using nano-PCM/nanofluid on a photovoltaic thermal system (PVT): Technical and economic study , 2019, Thermal Science and Engineering Progress.

[157]  Peng Zhang,et al.  Advanced thermal systems driven by paraffin-based phase change materials – A review , 2019, Applied Energy.

[158]  Inamuddin,et al.  Recent developments in phase change materials for energy storage applications: A review , 2019, International Journal of Heat and Mass Transfer.

[159]  F. Hammad,et al.  Applications of cascaded phase change materials in solar water collector storage tanks: A review , 2019, Solar Energy Materials and Solar Cells.

[160]  Experimental study and performance prediction of the PCM-antifreeze solar thermal system under cold weather conditions , 2019, Applied Thermal Engineering.

[161]  S. Şevik,et al.  A comparative investigation of the effect of honeycomb core on the latent heat storage with PCM in solar air heater , 2019, Applied Thermal Engineering.

[162]  Gamal B. Abdelaziz,et al.  Experimental investigation of a solar still with composite material heat storage: Energy, exergy and economic analysis , 2019, Journal of Cleaner Production.

[163]  A. Gujarathi,et al.  Experimental study and analysis of solar still desalination using phase change materials , 2019 .

[164]  Mahfoudh Ines,et al.  Experimental studies on the effect of using phase change material in a salinity-gradient solar pond under a solar simulator , 2019, Solar Energy.

[165]  Lin Lu,et al.  Optimization of thermal performance in thermocline tank thermal energy storage system with the multilayered PCM(s) for CSP tower plants , 2019, Applied Energy.

[166]  I. Hamdi,et al.  Experimental study of a new mixed mode solar greenhouse drying system with and without thermal energy storage for pepper , 2020 .