Towards deterministic subspace identification for autonomous nonlinear systems

The problem of identifying deterministic autonomous linear and nonlinear systems is studied. A specific version of the theory of deterministic subspace identification for discrete-time autonomous linear systems is developed in continuous time. By combining the subspace approach to linear identification and the differential-geometric approach to nonlinear control systems, a novel identification framework for continuous-time autonomous nonlinear systems is developed.

[1]  Akira Ohsumi,et al.  Subspace identification for continuous-time stochastic systems via distribution-based approach , 2002, Autom..

[2]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[3]  Lennart Ljung,et al.  Identification of Hammerstein-Wiener models , 2013, Autom..

[4]  Jessy W. Grizzle,et al.  Interpolation and numerical differentiation for observer design , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[5]  Alberto Isidori,et al.  Nonlinear control systems: an introduction (2nd ed.) , 1989 .

[6]  Anthony M. Bloch,et al.  Nonlinear Dynamical Control Systems (H. Nijmeijer and A. J. van der Schaft) , 1991, SIAM Review.

[7]  Michel Verhaegen,et al.  Recursive subspace identification of linear and non-linear Wiener state-space models , 2000, Autom..

[8]  Alex Simpkins,et al.  System Identification: Theory for the User, 2nd Edition (Ljung, L.; 1999) [On the Shelf] , 2012, IEEE Robotics & Automation Magazine.

[9]  Bart De Moor,et al.  Subspace identification of bilinear systems subject to white inputs , 1999, IEEE Trans. Autom. Control..

[10]  Bart De Moor,et al.  Subspace Identification for Linear Systems: Theory ― Implementation ― Applications , 2011 .

[11]  T. Söderström,et al.  Estimation of Continuous-time Stochastic System Parameters , 2008 .

[12]  Hugues Garnier,et al.  Continuous-time model identification from sampled data: Implementation issues and performance evaluation , 2003 .

[13]  Michel Verhaegen,et al.  Identification of nonlinear nonautonomous state space systems from input-output measurements , 2000, Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482).

[14]  H. Garnier,et al.  A PMF-based subspace method for continuous-time model identification. Application to a multivariable winding process , 2001 .

[15]  Alessandro Astolfi,et al.  A Note on Delay Coordinates for Locally Observable Analytic Systems , 2016, IEEE Transactions on Automatic Control.

[16]  M. Verhaegen,et al.  Identifying MIMO Wiener systems using subspace model identification methods , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[17]  Michel Verhaegen,et al.  Filtering and System Identification: Frontmatter , 2007 .

[18]  Rolf Johansson,et al.  Stochastic theory of continuous-time state-space identification , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[19]  Eduardo D. Sontag,et al.  Mathematical control theory: deterministic finite dimensional systems (2nd ed.) , 1998 .

[20]  L. Ljung Approaches to identification of nonlinear systems , 2010, Proceedings of the 29th Chinese Control Conference.

[21]  K. Worden,et al.  Past, present and future of nonlinear system identification in structural dynamics , 2006 .

[22]  Georgios B. Giannakis,et al.  A bibliography on nonlinear system identification , 2001, Signal Process..

[23]  Lennart Ljung,et al.  Perspectives on system identification , 2010, Annu. Rev. Control..

[24]  Tohru Katayama,et al.  Subspace Methods for System Identification , 2005 .

[25]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[26]  Luigi Garibaldi,et al.  A time domain approach for identifying nonlinear vibrating structures by subspace methods , 2008 .

[27]  Lennart Ljung,et al.  Kernel methods in system identification, machine learning and function estimation: A survey , 2014, Autom..

[28]  Jan M. Maciejowski,et al.  A new subspace identification method for bilinear systems , 1999 .

[29]  J. Suykens,et al.  Subspace identification of Hammerstein systems using least squares support vector machines , 2005 .

[30]  V. Verdult Non linear system identification : a state-space approach , 2002 .

[31]  E. Baeyens,et al.  SUBSPACE IDENTIFICATION OF MULTIVARIABLE HAMMERSTEIN AND WIENER MODELS , 2002 .

[32]  V. Verdult,et al.  Filtering and System Identification: A Least Squares Approach , 2007 .