Overview of materials technologies for space nuclear power and propulsion
暂无分享,去创建一个
Steven J. Zinkle | D. T. Ingersoll | Larry J. Ott | S. Zinkle | D. Ingersoll | M. Grossbeck | M. L. Grossbeck | R. J. Ellis | L. Ott
[1] R. V. Anderson,et al. Space-reactor electric systems: subsystem technology assessment , 1983 .
[2] K. Ehrlich,et al. An assessment of tensile, irradiation creep, creep rupture, and fatigue behavior in austenitic stainless steels with emphasis on spectral effects , 1990 .
[3] S. K. Bhattacharyya,et al. Space exploration initiative fuels, materials and related nuclear propulsion technologies panel. Final report , 1993 .
[4] H. McCoy. Type 304 Stainless Steel vs Flowing CO2 At Atmospheric Pressure and 1100-1800F , 1965 .
[5] K. M. Chidester,et al. Fuels for space nuclear power and propulsion , 1993 .
[6] D. Olander. Advanced LMFBR Fuels , 1978 .
[7] R. Clausing,et al. Effects of Neutron Irradiation on Microstructure and Mechanical Properties of Nimonic PE-16 , 1976 .
[8] Hiroshi Kawamura,et al. Radiation effects in beryllium used for plasma protection , 1994 .
[9] H. Ullmaier. The influence of helium on the bulk properties of fusion reactor structural materials , 1984 .
[10] V. R. Barabash,et al. Neutron irradiation effects on plasma facing materials , 2000 .
[11] S. Zinkle,et al. Operating temperature windows for fusion reactor structural materials , 2000 .
[12] H. Schroeder. High temperature helium embrittlement in austenitic stainless steels - correlations between microstructure and mechanical properties , 1988 .
[13] Hiroshi Kawamura,et al. The status of beryllium technology for fusion , 2000 .
[14] J. R. DiStefano,et al. Oxidation and its effects on the mechanical properties of Nb–1Zr☆ , 2001 .