Rotational Line Strengths and Self-Pressure-Broadening Coefficients for the 1.27-microm, a (1)D(g)-X (3)?(g)(-), v = 0-0 Band of O(2).

We measured at 296 K the rotational line strengths and pressure-broadening coefficients for the 1.27-mum, a (1)D(g)-X (3)?(g)(-), v = 0-0 band of O(2) with a Fourier transform infrared spectrometer using an optical path length of 84 m, a spectral resolution of 0.01 cm(-1), and sample pressures between 13 and 104 kPa. The integrated band strength is 7.79(17) x 10(-6) m(-2) Pa(-1) [7.89(17) x 10(-5) cm(-2) atm(-1)], and the Einstein Acoefficient for spontaneous emission is 2.237(51) x 10(-4) s(-1), which corresponds to an upper-state1/e lifetime of 1.24(3) h. The pressure-broadening coefficients decrease with increasing N and range from 19 to 38 MHz/kPa (FWHM). The mean value for the transitions studied is 30.3(21) MHz/kPa [0.1024(71) cm(-1)/atm] (FWHM). The Einstein A coefficient determined here is in good agreement with the widely accepted value of 2.58 x 10(-4) s(-1) initially obtained by Badgeret al. [J. Chem. Phys. 43, 4345 (1965)] more than 30 years ago. The standard uncertainties given above are one standard deviation.

[1]  David W. Rusch,et al.  Solar Mesosphere Explorer Near-Infrared Spectrometer: Measurements of 1.27-μm radiances and the inference of mesospheric ozone , 1984 .

[2]  W. Traub,et al.  The latitude variation of O2 dayglow and O3 abundance on Mars , 1979 .

[3]  W. Evans,et al.  Ground-based photometric observations of the 1·27 μ band of O2 in the twilight airglow , 1970 .

[4]  A. Robiette,et al.  The two-dimensional anharmonic oscillator: The CCC bending mode of C3O2 , 1976 .

[5]  Laurence S. Rothman,et al.  IMPROVED SPECTRAL PARAMETERS FOR THE THREE MOST ABUNDANT ISOTOPOMERS OF THE OXYGEN MOLECULE , 1998 .

[6]  W. J. Lafferty,et al.  Experimental investigation of the self- and N(2)-broadened continuum within the ν(2) band of water vapor. , 1996, Applied optics.

[7]  G. Herzberg,et al.  Fine Structure of the Infrared Atmospheric Oxygen Bands. , 1947 .

[8]  G. Millot,et al.  High-resolution stimulated Raman spectroscopy of O2 , 1992 .

[9]  C. Amiot,et al.  The magnetic dipole a1Δg → X3Σg− transition in the oxygen afterglow , 1981 .

[10]  Doran J. Baker,et al.  Decay of O2(a¹Δg) in the evening twilight airglow: Implications for the radiative lifetime , 1996 .

[11]  Ralph W. Nicholls,et al.  Reinvestigation of Rotational-Line Intensity Factors in Diatomic Spectra , 1974 .

[12]  T. Balasubramanian,et al.  On the rotational intensity distribution in the a1Δg → X3Σg− magnetic dipole transition of oxygen molecule , 1987 .

[13]  Martin G. Mlynczak,et al.  On the utility of the molecular oxygen dayglow emissions as proxies for middle atmospheric ozone , 1995 .

[14]  M. Mizushima,et al.  Microwave Resonance Lines of 16 O 2 in Its Electronic Ground State (X 3 Σ g , 1982 .

[15]  V. M. Devi,et al.  THE HITRAN MOLECULAR DATABASE: EDITIONS OF 1991 AND 1992 , 1992 .

[16]  David J. Nesbitt,et al.  The Einstein Coefficient for spontaneous emission of the O2 (a¹Δg) state , 1995 .

[17]  A. V. Jones,et al.  Observation and interpretation of O2 1.27‐μ emission enhancements in aurora , 1973 .

[18]  R. W. Nicholls,et al.  Recommended conventions for defining transition moments and intensity factors in diatomic molecular spectra , 1980 .

[19]  Yuan-Pern Lee,et al.  Intensities of lines in the band a 1Δg (v′= 0) − X3Σ−g (v″ = 0) of 16O2 in absorption , 1992 .

[20]  L. Wallace,et al.  Spectroscopic observations of atmospheric trace gases over Kitt Peak: 1. Carbon dioxide and methane from 1979 to 1985 , 1990 .

[21]  Liang-Bih Lin,et al.  Linestrengths of the band a1Δg(v' = 0)-X<3Σ-g(v'' = 0) of 16O2 , 1988 .

[22]  Richard M. Badger,et al.  Absolute Intensities of the Discrete and Continuous Absorption Bands of Oxygen Gas at 1.26 and 1.065 μ and the Radiative Lifetime of the 1Δg State of Oxygen , 1965 .

[23]  B. T. Marshall,et al.  A reexamination of the role of solar heating in the O2 atmospheric and infrared atmospheric bands , 1996 .