Herschel PACS Observations of 4–10 Myr Old Classical T Tauri Stars in Orion OB1

We present Herschel PACS observations of eight classical T Tauri Stars in the ∼7–10 Myr old OB1a and the ∼4–5 Myr old OB1b Orion subassociations. Detailed modeling of the broadband spectral energy distributions, particularly the strong silicate emission at 10 μm, shows that these objects are (pre-)transitional disks with some amount of small optically thin dust inside their cavities, ranging from ∼4 to ∼90 au in size. We analyzed Spitzer IRS spectra for two objects in the sample: CVSO-107 and CVSO-109. The IRS spectrum of CVSO-107 indicates the presence of crystalline material inside its gap, while the silicate feature of CVSO-109 is characterized by a pristine profile produced by amorphous silicates; the mechanisms creating the optically thin dust seem to depend on disk local conditions. Using millimeter photometry, we estimated dust disk masses for CVSO-107 and CVSO-109 lower than the minimum mass of solids needed to form the planets in our solar system, which suggests that giant planet formation should be over in these disks. We speculate that the presence and maintenance of optically thick material in the inner regions of these pre-transitional disks might point to low-mass planet formation.

[1]  Mauricio Solar,et al.  Astronomical data analysis software and systems , 2018, Astron. Comput..

[2]  J. Carpenter,et al.  Measurement of Circumstellar Disk Sizes in the Upper Scorpius OB Association with ALMA , 2017, 1711.04045.

[3]  Shengtai Li,et al.  Multiple Disk Gaps and Rings Generated by a Single Super-Earth , 2017, 1705.04687.

[4]  G. Dipierro,et al.  An opening criterion for dust gaps in protoplanetary discs , 2017, 1704.06664.

[5]  Julien H. Girard,et al.  Three Radial Gaps in the Disk of TW Hydrae Imaged with SPHERE , 2016, 1610.08939.

[6]  Vanessa P. Bailey,et al.  Imaging protoplanets: observing transition disks with non-redundant masking , 2016, Astronomical Telescopes + Instrumentation.

[7]  N. Calvet,et al.  A HERSCHEL VIEW OF PROTOPLANETARY DISKS IN THE σ ORI CLUSTER , 2016, 1607.01357.

[8]  E. Mamajek,et al.  The star formation history and accretion-disc fraction among the K-type members of the Scorpius–Centaurus OB association , 2016, 1605.08789.

[9]  C. Dominik,et al.  Constraining turbulence mixing strength in transitional discs with planets using SPHERE and ALMA , 2016, 1603.09357.

[10]  Luca Ricci,et al.  RINGED SUBSTRUCTURE AND A GAP AT 1 au IN THE NEAREST PROTOPLANETARY DISK , 2016, 1603.09352.

[11]  E. Bergin,et al.  THE RADIAL DISTRIBUTION OF H2 AND CO IN TW HYA AS REVEALED BY RESOLVED ALMA OBSERVATIONS OF CO ISOTOPOLOGUES , 2016, 1603.08520.

[12]  Leonardo Testi,et al.  THE VLA VIEW OF THE HL TAU DISK: DISK MASS, GRAIN EVOLUTION, AND EARLY PLANET FORMATION , 2016, 1603.03731.

[13]  P. Roche,et al.  A mid-infrared spectroscopic atlas of local active galactic nuclei on sub-arcsecond resolution using GTC/CanariCam , 2015, 1510.02631.

[14]  S. Ida,et al.  ALMA OBSERVATIONS OF A GAP AND A RING IN THE PROTOPLANETARY DISK AROUND TW HYA , 2015, 1512.05440.

[15]  A. Skemer,et al.  Accreting protoplanets in the LkCa 15 transition disk , 2015, Nature.

[16]  C. Dominik,et al.  A tunnel and a traffic jam: How transition disks maintain a detectable warm dust component despite the presence of a large planet-carved gap , 2015, 1511.04105.

[17]  D. Broguiere,et al.  THE 2014 ALMA LONG BASELINE CAMPAIGN: FIRST RESULTS FROM HIGH ANGULAR RESOLUTION OBSERVATIONS TOWARD THE HL TAU REGION , 2015 .

[18]  E. Bergin,et al.  EVIDENCE OF FAST PEBBLE GROWTH NEAR CONDENSATION FRONTS IN THE HL TAU PROTOPLANETARY DISK , 2015, 1505.00882.

[19]  T. Henning,et al.  Gaps, Rings, and Non-Axisymmetric Structures in Protoplanetary Disks - From Simulations to ALMA Observations , 2014, 1411.2736.

[20]  M. Benisty,et al.  Gas and dust structures in protoplanetary disks hosting multiple planets , 2014, 1410.5963.

[21]  L. Allen,et al.  A SPECTROSCOPIC CENSUS IN YOUNG STELLAR REGIONS: THE σ ORIONIS CLUSTER , 2014, 1408.0225.

[22]  L. Hartmann,et al.  THE EVOLUTION OF ACCRETION IN YOUNG STELLAR OBJECTS: STRONG ACCRETORS AT 3–10 Myr , 2014, 1406.0722.

[23]  J. Carpenter,et al.  AN ALMA CONTINUUM SURVEY OF CIRCUMSTELLAR DISKS IN THE UPPER SCORPIUS OB ASSOCIATION , 2014, 1404.0387.

[24]  L. Hartmann,et al.  CURVED WALLS: GRAIN GROWTH, SETTLING, AND COMPOSITION PATTERNS IN T TAURI DISK DUST SUBLIMATION FRONTS , 2013, 1308.3207.

[25]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[26]  E. Mamajek,et al.  INTRINSIC COLORS, TEMPERATURES, AND BOLOMETRIC CORRECTIONS OF PRE-MAIN-SEQUENCE STARS , 2013, 1307.2657.

[27]  L. Hillenbrand,et al.  ACCRETION RATES FOR T TAURI STARS USING NEARLY SIMULTANEOUS ULTRAVIOLET AND OPTICAL SPECTRA , 2013, 1303.0769.

[28]  H'elene Roussel,et al.  Scanamorphos: A Map-making Software for Herschel and Similar Scanning Bolometer Arrays , 2012, 1205.2576.

[29]  T. Díaz-Santos,et al.  Dust in active galactic nuclei. Mid-infrared T-ReCS/Gemini spectra using the new RedCan pipeline , 2012, 1212.5368.

[30]  E. Furlan,et al.  Results from HOPS: A Multiwavelength Census of Orion Protostars , 2012, 1212.1160.

[31]  C. Espaillat,et al.  PROBING DYNAMICAL PROCESSES IN THE PLANET-FORMING REGION WITH DUST MINERALOGY , 2012, 1209.5671.

[32]  K. Luhman,et al.  THE DISK POPULATION OF THE UPPER SCORPIUS ASSOCIATION , 2012, 1209.5433.

[33]  Catherine Espaillat,et al.  DUST FILTRATION BY PLANET-INDUCED GAP EDGES: IMPLICATIONS FOR TRANSITIONAL DISKS , 2012, 1205.5042.

[34]  D. Wilner,et al.  A CLOSER LOOK AT THE LkCa 15 PROTOPLANETARY DISK , 2011, 1110.3865.

[35]  Joana M. Oliveira,et al.  Science Results from the VISTA Survey of the Orion Star-forming Region , 2011 .

[36]  Sarah E. Dodson-Robinson,et al.  TRANSITIONAL DISKS AS SIGNPOSTS OF YOUNG, MULTIPLANET SYSTEMS , 2011, 1106.4824.

[37]  Catherine Espaillat,et al.  RESOLVED IMAGES OF LARGE CAVITIES IN PROTOPLANETARY TRANSITION DISKS , 2011, 1103.0284.

[38]  G. Chauvin,et al.  A companion candidate in the gap of the T Chamaeleontis transitional disk , 2011, 1102.4982.

[39]  Frantz Martinache,et al.  MAPPING THE SHORES OF THE BROWN DWARF DESERT. II. MULTIPLE STAR FORMATION IN TAURUS–AURIGA , 2011, 1101.4016.

[40]  Catherine Espaillat,et al.  TRANSITIONAL AND PRE-TRANSITIONAL DISKS: GAP OPENING BY MULTIPLE PLANETS? , 2010, 1012.4395.

[41]  J. Muzerolle,et al.  A SPITZER IRS STUDY OF INFRARED VARIABILITY IN TRANSITIONAL AND PRE-TRANSITIONAL DISKS AROUND T TAURI STARS , 2010, 1012.3500.

[42]  L. Testi,et al.  MILLIMETER IMAGING OF MWC 758: PROBING THE DISK STRUCTURE AND KINEMATICS , 2010, 1010.3016.

[43]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[44]  D. M. Watson,et al.  UNVEILING THE STRUCTURE OF PRE-TRANSITIONAL DISKS , 2010, 1005.2365.

[45]  E. Furlan,et al.  THE EVOLUTIONARY STATE OF THE PRE-MAIN SEQUENCE POPULATION IN OPHIUCHUS: A LARGE INFRARED SPECTROGRAPH SURVEY , 2010 .

[46]  M. Meyer,et al.  DEBRIS DISKS IN THE UPPER SCORPIUS OB ASSOCIATION , 2009, 0909.4124.

[47]  Sean M. Andrews,et al.  PROTOPLANETARY DISK STRUCTURES IN OPHIUCHUS , 2009, 0906.0730.

[48]  Jonathan P. Williams,et al.  A SPATIALLY RESOLVED INNER HOLE IN THE DISK AROUND GM AURIGAE , 2009, 0903.4455.

[49]  K. H. Kim,et al.  DUST PROCESSING AND GRAIN GROWTH IN PROTOPLANETARY DISKS IN THE TAURUS–AURIGA STAR-FORMING REGION , 2008, 0811.3622.

[50]  B. Reipurth Handbook of Star Forming Regions, Volume I: The Northern Sky , 2008 .

[51]  L. Hartmann,et al.  A Slowly Accreting ~10 Myr-old Transitional Disk in Orion OB1a , 2008, 0810.4575.

[52]  C. Briceño The Dispersed Young Population in Orion , 2008, 0810.2294.

[53]  T. Preibisch,et al.  Handbook of Star Forming Regions Vol. II Astronomical Society of the Pacific, 2008 , 2022 .

[54]  Catherine Espaillat,et al.  Confirmation of a Gapped Primordial Disk around LkCa 15 , 2008, 0807.2291.

[55]  C. Dullemond,et al.  EVIDENCE FOR DUST CLEARING THROUGH RESOLVED SUBMILLIMETER IMAGING , 2008, 0802.0998.

[56]  L. Hartmann,et al.  On the Diversity of the Taurus Transitional Disks: UX Tauri A and LkCa 15 , 2007, 0710.2892.

[57]  A. K. Vivas,et al.  Spitzer Observations of the Orion OB1 Association: Disk Census in the Low-Mass Stars , 2007, 0709.0912.

[58]  Zurich,et al.  The effect of a planet on the dust distribution in a 3D protoplanetary disk , 2007, 0708.4110.

[59]  Crystalline Silicates and Dust Processing in the Protoplanetary Disks of the Taurus Young Cluster , 2007, 0704.1518.

[60]  U. Michigan,et al.  25 Orionis: A Kinematically Distinct 10 Myr Old Group in Orion OB1a , 2007, astro-ph/0701710.

[61]  E. Young,et al.  A Spitzer Space Telescope Study of Disks in the Young σ Orionis Cluster , 2007, astro-ph/0701476.

[62]  J. Carpenter,et al.  ALMA OBSERVATIONS OF CIRCUMSTELLAR DISKS IN THE UPPER SCORPIUS OB ASSOCIATION , 2016, 1605.05772.

[63]  G. Lodato,et al.  Dust filtration at gap edges: Implications for the spectral energy distributions of discs with embedded planets , 2006, astro-ph/0609808.

[64]  Evidence for Mass-dependent Circumstellar Disk Evolution in the 5 Myr Old Upper Scorpius OB Association , 2006, astro-ph/0609372.

[65]  Ithaca,et al.  A Survey and Analysis of Spitzer Infrared Spectrograph Spectra of T Tauri Stars in Taurus , 2006, astro-ph/0608038.

[66]  G. Mellema,et al.  Dust flow in gas disks in the presence of embedded planets , 2006, astro-ph/0603132.

[67]  T. Preibisch,et al.  The Low-Mass Populations in OB Associations , 2006, astro-ph/0602446.

[68]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[69]  John Skilling,et al.  Data Analysis-A Bayesian Tutorial: Second Edition , 2006 .

[70]  Sao,et al.  Effects of Dust Growth and Settling in T Tauri Disks , 2005, astro-ph/0511564.

[71]  L. Hartmann,et al.  Disks in Transition in the Taurus Population: Spitzer IRS Spectra of GM Aurigae and DM Tauri , 2005 .

[72]  Jonathan P. Williams,et al.  Circumstellar Dust Disks in Taurus-Auriga: The Submillimeter Perspective , 2005, astro-ph/0506187.

[73]  Cambridge,et al.  The CIDA variability survey of Orion OB1. I. The low-mass population of Ori OB1a and 1B , 2005 .

[74]  L. Hartmann,et al.  The Truncated Disk of CoKu Tau/4 , 2004, astro-ph/0411522.

[75]  Paul S. Smith,et al.  The Multiband Imaging Photometer for Spitzer (MIPS) , 2004 .

[76]  J. R. Houck,et al.  The SMART Data Analysis Package for the Infrared Spectrograph on the Spitzer Space Telescope , 2004, astro-ph/0408295.

[77]  E. Wright,et al.  The Spitzer Space Telescope Mission , 2004, astro-ph/0406223.

[78]  L. Hartmann,et al.  The State of Protoplanetary Material 10 Million years after Stellar Formation: Circumstellar Disks in the TW Hydrae Association , 2004, astro-ph/0406138.

[79]  L. Hillenbrand,et al.  Accretion in Young Stellar/Substellar Objects , 2003, astro-ph/0304078.

[80]  Robert K. Pina,et al.  CanariCam: a multimode mid-infrared camera for the Gran Telescopio CANARIAS , 2003, SPIE Astronomical Telescopes + Instrumentation.

[81]  Caltech,et al.  Very Low Mass Stars and Brown Dwarfs in Taurus-Auriga , 2002, astro-ph/0209164.

[82]  David Wilner,et al.  Evidence for a Developing Gap in a 10 Myr Old Protoplanetary Disk , 2002 .

[83]  Mark R. Kidger,et al.  Spectral Irradiance Calibration in the Infrared. X. A Self-Consistent Radiometric All-Sky Network of Absolutely Calibrated Stellar Spectra , 1999 .

[84]  E. Feigelson,et al.  The η Chamaeleontis Cluster: A Remarkable New Nearby Young Open Cluster , 1999 .

[85]  M. Schwartz,et al.  Discovery of Seven T Tauri Stars and a Brown Dwarf Candidatein the Nearby TW Hydrae Association , 1998, astro-ph/9812189.

[86]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[87]  L. Hartmann,et al.  Pre-Main-Sequence Evolution in the Taurus-Auriga Molecular Cloud , 1995 .

[88]  T. Henning,et al.  A Laboratory Approach to the Interstellar Sulfide Dust Problem , 1994 .

[89]  J. Pollack,et al.  Composition and radiative properties of grains in molecular clouds and accretion disks , 1994 .

[90]  M. Skrutskie,et al.  A sensitive 10-micron search for emission arising from circumstellar dust associated with solar-type pre-main-sequence stars , 1990 .

[91]  S. Beckwith,et al.  A Survey for Circumstellar Disks around Young Stellar Objects , 1990 .

[92]  Michael F. Skrutskie,et al.  Circumstellar Material Associated with Solar-Type Pre-Main-Sequence Stars: A Possible Constraint on the Timescale for Planet Building , 1989 .

[93]  J. Mathis Interstellar dust and extinction , 1987 .

[94]  H. M. Lee,et al.  Optical properties of interstellar graphite and silicate grains , 1984 .

[95]  S. Warren,et al.  Optical constants of ice from the ultraviolet to the microwave. , 1984, Applied optics.

[96]  K. Nordsieck,et al.  The Size distribution of interstellar grains , 1977 .

[97]  S. Weidenschilling The distribution of mass in the planetary system and solar nebula , 1977 .

[98]  Rashid Sunyaev,et al.  Black holes in binary systems. Observational appearance , 1973 .