Dynamics of Symmetric Dynamical Systems with Delayed Switching

We study dynamical systems that switch between two different vector fields depending on a discrete variable and with a delay. When the delay reaches a problem-dependent critical value, so-called event collisions occur. This paper classifies and analyzes event collisions, a special type of discontinuity-induced bifurcations, for periodic orbits. Our focus is on event collisions of symmetric periodic orbits in systems with full reflection symmetry, a symmetry that is prevalent in applications. We derive an implicit expression for the Poincaré map near the colliding periodic orbit. The Poincaré map is piecewise smooth, finite-dimensional, and changes the dimension of its image at the collision. In the second part of the paper we apply this general result to the class of unstable linear single-degree-of-freedom oscillators where we detect and continue numerically collisions of invariant tori. Moreover, we observe that attracting closed invariant polygons emerge at the torus collision.

[1]  Karl Henrik Johansson,et al.  Dynamical properties of hybrid automata , 2003, IEEE Trans. Autom. Control..

[2]  Ulf Holmberg Relay Feedback of Simple Systems , 1991 .

[3]  Laura Gardini,et al.  The Hicksian floor-roof model for two regions linked by interregional trade , 2003 .

[4]  Rutherford Aris,et al.  Numerical computation of invariant circles of maps , 1985 .

[5]  Alan R. Champneys,et al.  Two-Parameter Discontinuity-Induced bifurcations of Limit Cycles: Classification and Open Problems , 2006, Int. J. Bifurc. Chaos.

[6]  Ubirajara F. Moreno,et al.  Analysis of piecewise-linear oscillators with hysteresis , 2003 .

[7]  Hinke M. Osinga,et al.  Arnol'd Tongues Arising from a Grazing-Sliding Bifurcation , 2009, SIAM J. Appl. Dyn. Syst..

[8]  C. Budd,et al.  Review of ”Piecewise-Smooth Dynamical Systems: Theory and Applications by M. di Bernardo, C. Budd, A. Champneys and P. 2008” , 2020 .

[9]  Mario di Bernardo,et al.  Complex Dynamics in a Hysteretic Relay Feedback System with Delay , 2007, J. Nonlinear Sci..

[10]  Carmen Chicone,et al.  Inertial and slow manifolds for delay equations with small delays , 2003 .

[11]  Sondipon Adhikari,et al.  Qualitative dynamic characteristics of a non-viscously damped oscillator , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[12]  R Szalai,et al.  Invariant polygons in systems with grazing-sliding. , 2008, Chaos.

[13]  Karl Henrik Johansson,et al.  Fast switches in relay feedback systems , 1999, Autom..

[14]  J. Yorke,et al.  Bifurcations in one-dimensional piecewise smooth maps-theory and applications in switching circuits , 2000 .

[15]  Yuri A. Kuznetsov,et al.  An event-driven method to simulate Filippov systems with accurate computing of sliding motions , 2008, TOMS.

[16]  Frank Schilder,et al.  Continuation of Quasi-periodic Invariant Tori , 2005, SIAM J. Appl. Dyn. Syst..

[17]  Alan R. Champneys,et al.  Chaos and Period-Adding; Experimental and Numerical Verification of the Grazing Bifurcation , 2004, J. Nonlinear Sci..

[18]  Stephen John Hogan,et al.  Local Analysis of C-bifurcations in n-dimensional piecewise smooth dynamical systems , 1999 .

[19]  Bernd Krauskopf,et al.  Periodic solutions and their bifurcations in a non-smooth second-order delay differential equation , 2006 .

[20]  Laura Gardini,et al.  Center Bifurcation for a Two-Dimensional Piecewise Linear Map , 2006 .

[21]  J. A. Kuznecov Elements of applied bifurcation theory , 1998 .

[22]  Thomas F. Fairgrieve,et al.  AUTO 2000 : CONTINUATION AND BIFURCATION SOFTWARE FOR ORDINARY DIFFERENTIAL EQUATIONS (with HomCont) , 1997 .

[23]  Wolf Bayer,et al.  Oscillation Types and Bifurcations of a Nonlinear Second-Order Differential-Difference Equation , 1998 .

[24]  Harry Dankowicz,et al.  A Newton Method for Locating Invariant Tori of Maps , 2006, Int. J. Bifurc. Chaos.

[25]  Celso Grebogi,et al.  Border collision bifurcations in two-dimensional piecewise smooth maps , 1998, chao-dyn/9808016.

[26]  James D. Meiss,et al.  Neimark-Sacker Bifurcations in Planar, Piecewise-Smooth, Continuous Maps , 2008, SIAM J. Appl. Dyn. Syst..

[27]  Yuri A. Kuznetsov,et al.  The fold-flip bifurcation , 2004, Int. J. Bifurc. Chaos.

[28]  Jan Sieber,et al.  Dynamics of delayed relay systems , 2006 .

[29]  Karl Henrik Johansson,et al.  Self-oscillations and sliding in Relay Feedback Systems: Symmetry and bifurcations , 2001, Int. J. Bifurc. Chaos.

[30]  G. Stépán Retarded dynamical systems : stability and characteristic functions , 1989 .

[31]  Erik Mosekilde,et al.  Torus birth bifurcations in a DC/DC converter , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[32]  Ott,et al.  Border-collision bifurcations: An explanation for observed bifurcation phenomena. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.