BOLD Responses Reflecting Dopaminergic Signals in the Human Ventral Tegmental Area

Current theories hypothesize that dopamine neuronal firing encodes reward prediction errors. Although studies in nonhuman species provide direct support for this theory, functional magnetic resonance imaging (fMRI) studies in humans have focused on brain areas targeted by dopamine neurons [ventral striatum (VStr)] rather than on brainstem dopaminergic nuclei [ventral tegmental area (VTA) and substantia nigra]. We used fMRI tailored to directly image the brainstem. When primary rewards were used in an experiment, the VTA blood oxygen level–dependent (BOLD) response reflected a positive reward prediction error, whereas the VStr encoded positive and negative reward prediction errors. When monetary gains and losses were used, VTA BOLD responses reflected positive reward prediction errors modulated by the probability of winning. We detected no significant VTA BOLD response to nonrewarding events.

[1]  George Paxinos,et al.  Atlas of the human brainstem , 1995 .

[2]  W. Schultz,et al.  Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli , 1996, Nature.

[3]  P. Dayan,et al.  A framework for mesencephalic dopamine systems based on predictive Hebbian learning , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[4]  Peter Dayan,et al.  A Neural Substrate of Prediction and Reward , 1997, Science.

[5]  J. Williams,et al.  A subset of ventral tegmental area neurons is inhibited by dopamine, 5-hydroxytryptamine and opioids , 1997, Neuroscience.

[6]  J. R. Baker,et al.  Imaging subcortical auditory activity in humans , 1998, Human brain mapping.

[7]  J. Hollerman,et al.  Dopamine neurons report an error in the temporal prediction of reward during learning , 1998, Nature Neuroscience.

[8]  Brian Knutson,et al.  FMRI Visualization of Brain Activity during a Monetary Incentive Delay Task , 2000, NeuroImage.

[9]  J. Driver,et al.  Control of Cognitive Processes: Attention and Performance XVIII , 2000 .

[10]  N. Logothetis,et al.  Neurophysiological investigation of the basis of the fMRI signal , 2001, Nature.

[11]  Yoshiharu Tamakawa,et al.  The substantia nigra in Parkinson disease: proton density-weighted spin-echo and fast short inversion time inversion-recovery MR findings. , 2002, AJNR. American journal of neuroradiology.

[12]  Sham M. Kakade,et al.  Opponent interactions between serotonin and dopamine , 2002, Neural Networks.

[13]  P. Montague,et al.  Activity in human ventral striatum locked to errors of reward prediction , 2002, Nature Neuroscience.

[14]  Samuel M. McClure,et al.  Temporal Prediction Errors in a Passive Learning Task Activate Human Striatum , 2003, Neuron.

[15]  Karl J. Friston,et al.  Temporal Difference Models and Reward-Related Learning in the Human Brain , 2003, Neuron.

[16]  W. Schultz,et al.  Discrete Coding of Reward Probability and Uncertainty by Dopamine Neurons , 2003, Science.

[17]  J. Bolam,et al.  Uniform Inhibition of Dopamine Neurons in the Ventral Tegmental Area by Aversive Stimuli , 2004, Science.

[18]  R. Habib,et al.  Activation of midbrain structures by associative novelty and the formation of explicit memory in humans. , 2004, Learning & memory.

[19]  Marlene C. Richter,et al.  Retinotopic Organization and Functional Subdivisions of the Human Lateral Geniculate Nucleus: A High-Resolution Functional Magnetic Resonance Imaging Study , 2004, The Journal of Neuroscience.

[20]  Karl J. Friston,et al.  Dissociable Roles of Ventral and Dorsal Striatum in Instrumental Conditioning , 2004, Science.

[21]  Mircea Ariel Schoenfeld,et al.  Differentiation of idiopathic Parkinson's disease, multiple system atrophy, progressive supranuclear palsy, and healthy controls using magnetization transfer imaging , 2004, NeuroImage.

[22]  Peter Dayan,et al.  Temporal difference models describe higher-order learning in humans , 2004, Nature.

[23]  H. Heinze,et al.  Reward-Related fMRI Activation of Dopaminergic Midbrain Is Associated with Enhanced Hippocampus- Dependent Long-Term Memory Formation , 2005, Neuron.

[24]  Daniel J. Levitin,et al.  The rewards of music listening: Response and physiological connectivity of the mesolimbic system , 2005, NeuroImage.

[25]  Sabine Kastner,et al.  Visual responses of the human superior colliculus: a high-resolution functional magnetic resonance imaging study. , 2005, Journal of neurophysiology.

[26]  Jonathan D. Cohen,et al.  An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. , 2005, Annual review of neuroscience.

[27]  Qasim Aziz,et al.  A Comparison of Visceral and Somatic Pain Processing in the Human Brainstem Using Functional Magnetic Resonance Imaging , 2005, The Journal of Neuroscience.

[28]  P. Glimcher,et al.  Midbrain Dopamine Neurons Encode a Quantitative Reward Prediction Error Signal , 2005, Neuron.

[29]  K. Berman,et al.  Cerebral Cortex doi:10.1093/cercor/bhj004 Neural Coding of Distinct Statistical Properties of Reward Information in Humans , 2005 .

[30]  J. O'Doherty,et al.  Predictive Neural Coding of Reward Preference Involves Dissociable Responses in Human Ventral Midbrain and Ventral Striatum , 2006, Neuron.

[31]  N. Bunzeck,et al.  Absolute Coding of Stimulus Novelty in the Human Substantia Nigra/VTA , 2006, Neuron.

[32]  H. Heinze,et al.  The Dopaminergic Midbrain Participates in Human Episodic Memory Formation: Evidence from Genetic Imaging , 2006, The Journal of Neuroscience.

[33]  David N. Kennedy,et al.  Automated Brainstem Co-registration (ABC) for MRI , 2006, NeuroImage.

[34]  H. Heinze,et al.  Ageing and early-stage Parkinson's disease affect separable neural mechanisms of mesolimbic reward processing. , 2007, Brain : a journal of neurology.

[35]  W. Schultz,et al.  Learning-Related Human Brain Activations Reflecting Individual Finances , 2007, Neuron.

[36]  P. Glimcher,et al.  Statistics of midbrain dopamine neuron spike trains in the awake primate. , 2007, Journal of neurophysiology.

[37]  Samuel M. McClure,et al.  Time Discounting for Primary Rewards , 2007, The Journal of Neuroscience.

[38]  Katja Wiech,et al.  Anticipatory brainstem activity predicts neural processing of pain in humans , 2007, Pain.

[39]  Raymond J. Dolan,et al.  Anticipation of novelty recruits reward system and hippocampus while promoting recollection , 2007, NeuroImage.

[40]  R. Freeman,et al.  Neurometabolic coupling in cerebral cortex reflects synaptic more than spiking activity , 2007, Nature Neuroscience.

[41]  Hans-Jochen Heinze,et al.  Mesolimbic novelty processing in older adults. , 2007, Cerebral cortex.